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a b s t r a c t 

In this paper, we divide performance-driven facial animation into two data transformation problems, fa- 

cial expression retargeting and face driving, and report a semi-supervised framework to solve the two 

problems. The objective function includes two parts. In the first part, we unify the temporal and geo- 

metrical characteristics of facial expressions and face models as topology characteristics, and preserve 

the topology characteristics in manifold subspace during data transformation. In the second part, some 

given data are used as labels to guide the transformation. The proposed semi-supervised framework can 

be efficiently solved by a least square method. Experimental results show that the proposed framework 

outperforms existing methods in both facial expression retargeting and face driving. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Due to the ability to create vivid and dynamic virtual char-

cters, performance-driven facial animation technique has been

uccessfully applied to digital film making and interactive en-

ertainment. Hence, it attracts considerable attention from both

cademic and industrial worlds. 

Performance-driven facial animation comprises two key tech-

iques, i.e., facial expression retargeting and face driving. The

ormer technique means transforming the facial motion of a real

uman actor captured by certain specialized equipment to the

acial motion of other virtual 3D characters. The facial motion is

sually referred to motion data including sequences of frames,

ith each frame represented by coordinates of a group of facial

eature points at that time instance. Face driving is deforming

 3D face through a group of facial feature points to generate

ertain kind of facial expression. We rephrase the human actor as

he source object, and rephrase the virtual character as the target

bject. Similarly, their expressions are named as source expression

nd target expression respectively. 
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hina under Grant No. LY17F020 0 09 and No. LQ14F020 0 03 , the National Nat- 
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Basically, there are two classes of facial expression retargeting

echniques. The first class is Blend Shape methods [1–9] , which

imulate the unknown facial expression by blending several existed

ey expressions through certain weights. The second kind of retar-

eting technique is facial expression cloning [10–12] , which infers

he unknown facial expression based on pairwise examples in-

luding existed face and its expression. The motion vectors are ex-

racted from the sample pairs, transformed in direction and mag-

itude, and applied to the given face to generate facial expression. 

Face driving technique can be divided into four classes. Some

ethods build physical muscle models for human face and drive

he models based on some animation standards [13,14] , which

ransform the displacements of the feature points to the variations

f some animation parameters. Some methods achieve face driving

y piecewise linear interpolation [15] . These methods triangulate

he facial feature points, and project each face vertex onto a

pecific triangular mesh. They compute the displacement of the

ertex by interpolating the displacements of the feature points.

he scattered data interpolation methods use the displacements

f feature points as known condition, and interpolate for the dis-

lacements of other vertices. Most frequently used interpolation

ethod is radial basis function [16] . Some methods preserve the

opology of face model during face driving, under the goal that the

eformed face matches the expression feature points well [17] . 

However, there still exist several disadvantages in the afore-

entioned methods. Some facial expression retargeting methods

eavily depend on the key expressions, which need to be built

or each virtual character and lack reusability [3,4] . Some methods

http://dx.doi.org/10.1016/j.sigpro.2017.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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fail to preserve the temporal characteristics when transplanting

the actor’s facial motion to the virtual character [1,2] . In addition,

some face driving methods are confined to pre-defined animation

parameters, thus lack flexibility [14] . 

According to our definition, expression retargeting aims to solve

the target expression based on the source object’s face, the source

expression and a few known frames of the target expression, while

face driving aims to solve the vertex displacements of the source

object, given the displacements of a small set of facial feature ver-

tices. They are very similar in that both problems can be described

by some semi-supervised objective function, with similar lost

function constructed by certain temporal or spatial constraint. To

this end, we propose a semi-supervised framework which unifies

facial expression retargeting and face driving in this paper. The

objective function is composed of two terms, the first term aims

to preserve the temporal characteristics implied in the source

expression and the spatial characteristics contained in the source

object. The second term is designed to match the unknown target

expression or deformed face to some given data. In this frame-

work, the constraint is represented using manifold method, and

the given data are referred to as several known frames of target

expression or new positions of some facial feature points, depend-

ing on specific problems. We can optimize the objective function

using least square approach. It is worthwhile to highlight several

advantages of the proposed semi-supervised framework as follows:

(1) This framework does not need any key expressions for facial

expression retargeting, thus remove the restriction from the

key expressions and free expression retargeting from tedious

manual work. 

(2) Manifold method provides unified approach to representing

the temporal constraint of facial expression and the spatial

constraint of face driving, thus we can address the two prob-

lems in the same way. 

(3) The framework can be efficiently solved by a least square

method, this ensures optimized results of expression retar-

geting and face driving. 

The rest part of this paper is organized as follows:

Section 2 shows related works. In Section 3 , we present the

semi-supervised framework in detail, and describe how to achieve

facial expression retargeting and face driving through this frame-

work. In Section 4 , we show some experimental results, and

conclusion of this paper is given in the last section. 

2. Related works 

2.1. Facial expression retargeting 

Facial expression retargeting methods can be classified into

two groups. The first group of methods are Blend Shape methods

[1–9] , which obtain each frame of the target expression by linearly

blending a set of key shapes using certain combination weights. A

variety of expressions emerge when the weights are changed. The

works described in [6,9] fit each frame of the source expression to

the key shapes of the source object’s face to get the combination

weights, which were subsequently used to combine the key shapes

of the target object’s face to generate the target expression. Song

and co-workers [1,2] parameterized the space spanned by the

source object’s key shapes, and learned the mapping from the

parameters to the combination weights of the target object’s key

shapes, then created target expression through the weights. In

[3,4] , the author built key shapes for the target object using a

sample-based method, and obtained the weights of these key

shapes by learning the spatial relations among the frames of the

source expression. 
The second group of methods are expression cloning methods

10–12] , which extract motion vectors of the vertices from source

xpression and adjust their directions and magnitudes to apply

hem to the target object’s face to generate target expression. Igor

t al. created target expression using the motion vectors of the

ource expression directly based on normalization strategy which

liminated mismatch between source and target objects’ faces

11] . The work of [12] adopted radial basis function to simulate

he relation between the source and the target objects’ faces, and

stimated the motion vectors of the target object’s face from the

otion vectors of the source object’s face. 

The aforementioned methods did not consider the character-

stics of facial expressions in temporal domain, so the estimated

arget expression failed to present natural transitional effect. Some

esearchers have noticed the problem. Deng et al. [5] learned the

apping from sample faces’ motion data to the weights of their

ey shapes, then estimated the key-shape weights of the target

bject by applying the mapping to the motion data of the source

bject. The temporal characteristics were implied by the motion

ata. Weise et al. [7] combined weight computation and source

xpression tracking into one framework and provided unified

ptimization method to guarantee the temporal constraint. Seol

t al. [8] adopted temporal difference method to represent facial

xpression, and obtained the weights of target object’s key shapes

y solving Poisson equation. However, these methods still need

ey shapes, which should be built carefully by hand in advance,

nd this is very labor intensive work. 

.2. Feature-based face driving 

Prevalent feature-based face driving can be divided into four

lasses. The first class of methods achieve face driving based on

ome animation standards, such as Facial Action Coding System

FACS) [13] and MPEG-4 standard [14] . These methods build

hysical models for human face according to anatomy experience,

nd use muscle vectors to simulate the effect of face muscles.

he animation parameters of FACS or MPEG-4 standard are then

onverted to the muscle vectors for face driving. The weakness

f these methods is that the motion vectors computed from the

eature points have to be converted into the animation parame-

ers, and the positions of muscle vectors are difficult to determine.

sually, the determination process needs tedious manual work

nd is a process of trial and error. In addition, these methods fail

o demonstrate detailed characteristics of facial expression. 

The second class of methods are piecewise linear interpolation.

his kind of methods triangulate the facial feature points to form a

parse triangular mesh structure, then project each vertex of face

odel onto a specific mesh. Given motion vectors of the feature

oints contained in the mesh, the displacement of each vertex

an be interpolated from these motion vectors [15] . When the

umber of feature points is small, the mesh structure cannot cover

he whole face. Consequently, it would be difficult to compute

he displacement of every vertex. Therefore, this kind of methods

annot obtain good driving result with few facial feature points. 

The third kind of methods are scattered data interpolation.

he most frequently used interpolation approach is radial basis

unction. Given motion vectors of a set of feature points, the

uthors of [16] used radial basis function to interpolate for the

isplacements of all other vertices. However, the interpolation is

ased on Euclidean distance measurement between the feature

oints and the other vertices, hence is unable to generate decent

esult in case of small number of feature points. This was clearly

emonstrated in [18] . 

Recently, some topology preserving methods were applied to

ace driving [17,19,20] . The key point is maintaining the local spa-

ial constraint when deforming the face model using facial feature
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oints. Nevertheless, the constraint adopted by these methods

acks enough representative ability for the rotation of the local

acial structure during face driving. As a result, the deformed face

ften shows unnatural wrinkles or other artifacts in local regions. 

.3. Topology preserving learning 

Deep learning has been a hot research topic in recent years.

nsupervised deep learning methods [21] discover the topology

f the training data by learning the feature representations that

an best reconstruct the original data. Supervised deep learning

ethods [22] preserve the data topology by connecting the neu-

ons related to the salient data features in the current network

ayer to the neurons in the adjacent and upper layer. However,

eep learning methods need a large amount of training data

23–26] that may be unavailable in many applications. 

Sparse coding and multi-view learning have found their usages

n image ranking [27–29] and classification [30] . The method

ntroduced in [28] represented the topology of the original images

y sparsely selected features from a hyper-graph structure. The

ork of [29,30] learned the topology of the images by combining

aried image features into a unified representation while preserv-

ng the interdependency among the image features. However, it is

uite unsure how to apply these methods to facial animation. The

tudy introduced in [31] used a multi-view Hessian regularized

ogistic regression (mHLR) for human action recognition. Specif-

cally, this method enhances the multi-view logistic regression

y incorporating the multi-view Kernel penalizer for reducing

omplexity and the multi-view Hessian regularization term for

reserving manifold structure. One of the contributions is to use

essian regularization to preserve the local geometry. 

Manifold learning is known as a group of topology preserving

earning methods in that they preserve the positional interre-

ationship between the original data points while transforming

he data points into low dimensional embeddings. Traditional

anifold learning is unsupervised method, but some researcher

ave proposed various semi-supervised manifold learning methods

y adopting prior knowledge [32–37] . Typical methods include

emi-supervised Laplacian eigenmap [34] , semi-supervised locally

inear embedding [35] . In [36] , the author expanded locally linear

mbedding, local tangent space alignment and ISOMAP to semi-

upervised version respectively. Recently, several semi-supervised

rameworks were proposed to cover variable manifold learning

lgorithms [38–40] . Nevertheless, these works regard manifold

earning only as a tool for dimensionality reduction. The manifold

egularization can be integrated with empirical risk minimiza-

ion [41] for classification. In [42] , the authors enhanced this

ramework using importance re-weighting such that the method

chieves classification with noisy labels. In addition, they solved

he problem of noise rate estimation in this study. 

Some recently emerged methods share similarity with man-

fold learning in the ability of topology preservation [17,43–45] .

owever, these methods were not designed for dimensionality,

ut for object tracking in video streams [43] and 3D [17] or 2D

44,45] object deformation. In [43] , the authors assumed that

he video sequence and the object motion trajectory lied on two

anifolds that had similar topology structure, then they proposed

 semi-supervised method to address the object tracking problem

y use of some prior knowledge about the object position. This

ethod adopts linear regression to model the correlation between

ideo frames and object positions, therefore the estimation of

he object trajectory is not accurate, especially when the prior

nowledge is not enough. In [17] , the authors assumed that the

eformed face had the same local geometric structure as the

riginal face, and the local structure was depicted by the linear

econstruction error of each vertex by its neighboring vertices.
iven new coordinates of some facial feature points, the method

chieved face driving in a semi-supervised way. The weakness

f this method is that the local structures are not sensitive to

otation, therefore cannot represent local facial details when

otation of local facial region exists. Though the local structures

ould be enhanced by appending local rotations for each vertex,

his problem still cannot be perfectly solved. 

. The semi-supervised framework for facial animation 

eneration 

.1. The semi-supervised framework 

In facial expression retargeting, the temporal characteristics

f the source expression are required to be maintained. In face

riving, the geometrical characteristics of the source object’s face

hould be preserved. If we regard both the frames contained in

xpression sequence and the vertices of face model as data points,

acial expression retargeting and face driving can be converted

nto similar data transformation process which transforms source

ata into target data. Meanwhile, the temporal and geometrical

haracteristics can be unified by certain topology characteristics of

he data set. Recent research indicates that data sets with similar

opology characteristics have similar low-dimensional manifold

tructures [46–49] , which are usually constructed by some local

ow-dimensional structures. To this end, we preserve the topology

haracteristics of data set by utilizing the similarity between the

ocal low-dimensional structures of the source data and the target

ata, then adopt a number of labeled data points as supervision

nformation to construct the semi-supervised framework. This is

he main concern of our method. 

Specifically, we construct a local structure using a data point

nd its neighbors, and represent its low-dimensional counterpart

s local tangent coordinates based on a local principal component

nalysis (PCA). We assume that the local tangent coordinates at

 data point of the source data set differ from that of the target

ata set by a local linear transformation. It is known that a local

tructure of the target data set can be easily reconstructed by its

ocal tangent coordinates through an inverse projection of the local

CA. Hence, the unknown target data can be computed through

 serials of local affine transformations, each was imposed on the

ocal tangent coordinates at a specific data point of the source

ata set. The framework is depicted in Fig. 1 . 

.1.1. The objective function 

We denote the source data set as X = { x 1 , x 2 , . . . , x N } where

 i ∈ R D is a data point, and represent the local structure at x i as

 i = { x i 1 , x i 2 , . . . , x i k i } including x i itself. The local tangent coordi-

ates of the local structure can be computed by a local PCA as 

˜ 
 

j 
i 
= U 

T 
i (x i j − x̄ i ) , j = 1 , . . . , k i (1) 

here x̄ i is the mean of X i , U i = [ u 1 
i 
, . . . , u d 

i 
] can be computed as

he left singular vectors corresponding to the d largest singular val-

es of X i − x̄ i e 
T , and d is the dimension of the manifold. Eq. (1) in-

icates that a source data point x i j can be reconstructed as 

 i j ≈ U i ̃  x j 
i 
+ x̄ i . (2) 

Suppose Y = { y 1 , y 2 , . . . , y N } is the target data set, and

 i = { y i 1 , y i 2 , . . . , y i k i } is the local structure at y i , the local tan-

ent coordinates of Y i can be similarly computed as 

˜ 
 

j 
i 
= V 

T 
i (y i j − ȳ i ) , j = 1 , . . . , k i , (3) 

here ȳ i is the mean of Y i , and V i = [ v 1 
i 
, . . . , v d 

i 
] are the left

ingular vectors corresponding to the d largest singular values of
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Fig. 1. The proposed semi-supervised framework. 
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 i − ȳ i e 
T . Similar to (2) , we have 

y i j ≈ V i ̃  y j 
i 
+ ȳ i . (4)

According to our assumption, there exists a local linear trans-

formation between the local tangent coordinates at a data point of

the source data set and that of the target data set. Let Q i be the

local linear transformation at the i th data point, we accordingly

have 

˜ y j 
i 
= Q i ̃  x j 

i 
. (5)

Substituting (5) into (3) , we then obtain Q i ̃  x 
j 
i 

= V T 
i 
(y i j − ȳ i ) , from

which a target data point y i j can be reconstructed as V i Q i ̃  x 
j 
i 
+ ȳ i .

Let V i Q i = D i , ȳ i = c i , we obtain 

y i j ≈ D i ̃  x j 
i 
+ c i 

which indicates that the target data point differs from the local

tangent coordinate of corresponding source data point by an affine

transformation. The errors of the optimal affine transformation at

the i th data point is then given by 

min 

D i ,c i 

k i ∑ 

j=1 

‖ y i j − (D i ̃  x j 
i 
+ c i ) ‖ 

2 
2 . (6)

To compute the target data points { y 1 , y 2 , . . . , y N } , we need to

solve the following problem 

min 

D i ,c i ,y i j 

N ∑ 

i =1 

k i ∑ 

j=1 

‖ y i j − (D i ̃  x j 
i 
+ c i ) ‖ 

2 
2 . (7)

In the meanwhile, we choose a number of data points from

the source data set, and assign new values for these data points.

These new values act as labels which are used to guide the trans-

formation process. For simplicity, we can rearrange the positions

of the data points such that the first M data points are labeled. Let

ˆ y i (i = 1 , . . . , M) be the labels of the selected data points, we then

add the following term to problem (7) : 

M ∑ 

i =1 

‖ y i − ˆ y i ‖ 

2 
2 . (8)
Considering both (7) and (8) , the semi-supervised framework

an be denoted as: 

min 

 i ,c i ,y i 

N ∑ 

i =1 

k i ∑ 

j=1 

‖ y i j − (D i ̃  x j 
i 
+ c i ) ‖ 

2 
2 + β

M ∑ 

i =1 

‖ y i − ˆ y i ‖ 

2 
2 (9)

here β is a regularization parameter. 

.1.2. The solution to the objective function 

We rewrite the objective function of problem (9) as 

N 
 

i =1 

‖ Y i − (D i ̃
 X i + c i e 

T ) ‖ 

2 
F + β

M ∑ 

i =1 

‖ y i − ˆ y i ‖ 

2 
2 (10)

here ˜ X i = { ̃ x 1 
i 
, ̃  x 2 

i 
, . . . , ̃  x 

k i 
i 
} . 

Since c i = ȳ i , the first term of (10) can be rewritten as 

N 
 

i =1 

‖ Y i (I − ee T /k i ) − D i ̃
 X i ‖ 

2 
F , (11)

nd the optimal transformation matrix D i is given by 

 i (I − ee T /k i ) ̃  X 

+ 
i 

(12)

here ˜ X + 
i 

is the Moore–Penrose generalized inverse of ˜ X i . Substi-

uting (12) into (11) , we have 

N 
 

i =1 

‖ Y i (I − ee T /k i )(I − ˜ X 

+ 
i 

˜ X i ) ‖ 

2 
F . (13)

et W i = (I − ee T /k i )(I − ˜ X + 
i 

˜ X i ) , and suppose S i is the 0-1 selection

atrix s.t. Y S i = Y i , (13) can be represented into matrix form: 

 Y SW ‖ 

2 
F , (14)

here W = diag(W 1 , . . . , W N ) , S = [ S 1 , . . . , S N ] . 

Let B = SW W 

T S T , (14) is equivalent to trace ( YBY T ), therefore the

atrix representation of problem (9) is 

in 

Y 
trace (Y BY T ) + β‖ Y − Y l ‖ 

2 
F (15)

here Y l = [ ̂  Y , 0] with 

ˆ Y = [ ̂  y 1 , . . . , ̂  y M 

] . 

We can divide Y into two parts as Y = [ Y 1 , Y 2 ] where Y 1 rep-

esent the data points that have labels and Y 2 are those without

abels. Hence, the first term of the objective function of (15) can

e transformed to 

race 

([
Y 1 Y 2 

][B 11 B 12 

B 

T 
12 B 22 

][
Y T 1 

Y T 2 

])
(16)

here B 11 is a symmetric matrix of size M × M , correspond-

ng to the labeled data, and B 22 is of size (N − M) × (N − M) ,

orresponding to the unlabeled ones. 

Consequently, problem (15) can be represented as 

in 

Y 
trace 

([
Y 1 Y 2 

][ B 11 B 12 

B 

T 
12 B 22 

][
Y T 1 

Y T 2 

])
+ β‖ Y 1 − ˆ Y ‖ 

2 
F . (17)

The objective function of (17) is quadratic. Under weak as-

umptions, it can be shown that this function has a symmetric

ositive definite Hessian matrix, therefore, its minimization can be

omputed by solving the following linear system of equations: 

B 11 + βI B 12 

B 

T 
12 B 22 

][
Y T 1 

Y 2 
T 

]
= 

[
β ˆ Y T 

0 

]
. (18)

Obviously, we can represent the closed form solution of the

roblem as: 

 = 

[
β ˆ Y 0 

][B 11 + βI B 12 

B 

T 
12 B 22 

]−1 

. (19)

The algorithm of the semi-supervised framework can be

ummarized as Algorithm 1 . 
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Algorithm 1 The algorithm of the semi-supervised framework for 

performance-driven facial animation. 

Input: 

source data set X = { x 1 , x 2 , . . . , x N } , and a group of labels ˆ Y = 

{ ̂  y 1 , . . . , ̂  y M 

} assigned to some selecteddata points, { x 1 , . . . , x M 

} 
for simplicity, from the sourcedata set. 

Output: 

The target data set Y = { y 1 , y 2 , . . . , y N } ; 
1: Initialize matrix B as zero. 

2: for All the data points x i in X do 

3: Determine k i − 1 nearest neighbors of x i according tosome 

strategy, and form the local structure X i ; 

4: Compute the d largest unit singular vectors g 1 , g 2 , . . . , g d of 

(X i − x̄ i e 
T ) T (X i − x̄ i e 

T ) , and set G i = [ e/ 
√ 

k i , g 1 , g 2 , . . . , g d ] ; 

5: Update matrix B by B (I i , I i ) = B (I i , I i ) + I − G i G 

T 
i 
(i = 1 , . . . , N) , 

where I i is each local structure’s index set; 

6: end for 

7: Obtain the closed form solution of target data Y through (19). 

Fig. 2. The local structure of a source expression. 
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Fig. 3. Facial expression retargeting based on the proposed framework. 

Fig. 4. The local structure of a source object’s face. 
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.2. The application of the framework to facial expression retargeting 

In facial expression retargeting, we represent the source ex-

ression X as a sequence of motion data, with each frame of

he motion data x i denoting a data point, and define the local

tructure at x i as a consecutive sequence of frames including the

urrent frame and several adjacent frames before and after the

urrent frame in temporal domain. Fig. 2 shows a local structure

 i of a source expression X , where the frames belonging to X i are

endered in dark color. 

Similarly, we represent the target expression Y as the unknown

otion data of a new virtual character, and solve the motion data

nder the condition that some frames of the target expression 

ˆ Y 

re already known. ˆ Y can be seen as labels, and can be rearranged

o be the foremost frames of the motion data. As discussed in

ection 3.1 , this is a semi-supervised problem, and can be ac-

ordingly solved by Algorithm 1 . Fig. 3 explains how to apply

lgorithm 1 to facial expression retargeting. 

.3. The application of the framework to face driving 

In face driving, we represent the source object’s face X as a 3D

ace model comprising a large number of 3D vertices, with each

ertex x i denoting a data point, and define the local structure at x i 
s several vertices including the current vertex and its surrounding

ertices. Fig. 4 shows a local structure X i of a source face, where

he vertices belonging to X i are rendered in dark color. 

Similarly, we represent the target object’s face Y as the un-

nown 3D face after model deformation, and solve the 3D face

nder the condition that some vertices of the 3D face ˆ Y are
lready known. ˆ Y can be seen as labels, and can be rearranged

o be the foremost vertices of the face model. This is also a

emi-supervised problem, and can be solved by Algorithm 1 . Fig. 5

xplains how to apply Algorithm 1 to face driving. 

. Experiments and discussions 

In this section, we will present several experiments to demon-

trate the superiority of the proposed framework to some existing

ethods in both facial expression retargeting and face driving.

irst, the number of the labeled data is quite important to the

roposed semi-supervised framework, so we will evaluate the

nfluence of the labels’ number to the learning results at first.

fter determining the number of labels, we will compare the facial

xpression retargeting result and face driving result of several

pproaches, including the proposed framework, to testify the

ccuracy of the framework. At last, we demonstrate the visual

ffect of the performance-driven facial animation based on the

roposed framework. 

To evaluate facial expression retargeting result and face driving

esult of different approaches, we need not only the source objects’

aces and source expressions but also the corresponding target

bjects’ faces and target expressions so as to compare the synthe-

ized target faces and target expressions with the true ones. To this

nd, we build pairwise 3D virtual face models using 3Ds Max soft-

are, where each pair includes a source face with no expression

nd corresponding target face with certain expression. Also, we ask

n experienced animator of our team to generate facial expression

equences of source faces and the same expression sequences of
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Fig. 5. Face driving based on the proposed framework. 

Fig. 6. The error of facial expression retargeting with different number of labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The error of facial expression retargeting with respect to different source 

expressions. 

Fig. 8. The error of facial expression retargeting with respect to each frame con- 

tained in the motion data. 
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target faces using 3Ds Max, and select some facial feature points

from the source and target sequences to construct the source ex-

pressions and target expressions. The selected feature points aim

to simulate the marker points on the objects’ faces. Since the labels

used for facial expression retargeting and face driving are chosen

from the target expression sequences and the target faces respec-

tively, the labels are supposed to contain no noise. To compensate

for this weakness, we are planning to incorporate noise reduction

scheme in the proposed framework in our following study. 

4.1. The influence of the labels’ number to facial expression 

retargeting 

In face driving, the labels used to deform the given source face

are a set of facial feature points. As discussed above, we use these

facial feature points to simulate the marker points used in the

process of motion capture. Typically, the number of marker points

is designated by a professional animator to generate optimized
otion capture data, so we fix the number of facial feature points

uring face driving. 

In facial expression retargeting, the labels are some known

rames corresponding to the selected frames from the source

xpression, with each frame represented by a number of facial

eature points depicting the expression appearance at that time

nstance. Different from face driving, we do not have ideal method

o determine the number of labeled frames, so we need to eval-

ate the influence of the labels’ number to expression retargeting

nd find an optimal value for expression retargeting. 

To this end, we generate 50 source expressions and same kind

f 50 target expressions, with each source expression or target

xpression constructed by 100 frames. Then we select a number

f frames from each target expression as labels to perform the

roposed framework using each source expression as input. We

ary the number of labels and compute the mean error of the

0 tests with respect to different label numbers. For the sake

f robustness, we conduct facial expression retargeting for each

acial feature point, and integrate the motion of all feature points

ogether according to their positions to form the target expression.

n addition, the frames chosen as labels are evenly distributed to

uarantee the robustness of the algorithm. We use the feature
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Fig. 9. The visual comparison of the face driving result using different methods, (a) radial basis function (b) Laplacian method (c) the semi-supervised framework (d) the 

true face. 

Fig. 10. The error of the face driving result using different methods. 
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oint-based strategy in the following experiments about facial

xpression retargeting to ensure robustness. 

Denote each source expression as X j ( j = 1 , . . . , 50) and each

arget expression as ˆ Y j ( j = 1 , . . . , 50) , and let Y j ( j = 1 , . . . , 50) be

he generated target expression, we compute the mean error of

he 50 tests as 1 
50 

∑ 50 
j=1 ‖ Y j − ˆ Y j ‖ F . Note that X 

j here represents

00 consecutive facial expression frames, with each frame denoted

y a set of facial feature points, and so does Y j . Fig. 6 shows

he mean error of facial expression retargeting with respect to

ifferent label numbers, where erbf represents the error of radial

asis function (RBF) interpolation [16] , elap represents the error of

aplacian method [17] , and essf denotes the error of the proposed

emi-supervised framework. In the rest part of the paper, erbf,
lap and essf have the same meaning as what they represent here.

ig. 6 indicates that for an expression sequence of 100 frames,

 labels are enough for our approach to generate decent target

xpression. The error tends to be very tiny when the number of

abels rises to 20. Nevertheless, the error of both RBF and Laplacian

ethods is much higher than that of our approach. The reason

s that our approach can preserve the temporal characteristics of

he source expression. In the following experiments, we set the

umber of labels as 10 for facial expression retargeting. 

.2. The adaptability of the framework to facial expression retargeting

To testify the applicability of the proposed framework in ex-

ression retargeting, we need to evaluate the error of expression

etargeting performed on various source expressions. In particular,

he framework is executed on 50 different source expressions to

enerate 50 target expressions. Similarly, the error is computed

s ‖ Y j − ˆ Y j ‖ F where Y j is the generated target expression and 

ˆ Y j 

s the true target expression. The error is shown in Fig. 7 which

ndicates that the proposed framework has the smallest error on

he randomly generated 50 source expressions. The Y j here are

lso represented as 100 consecutive facial expression frames. 

Since expression is constructed by frames, we also need to

valuate the error of each frame. To this end, we average the

rror of expression retargeting performed on the 50 different

ource expressions, and demonstrate the mean error of each

rame in Fig. 8 where the error is computed as ‖ y i − ˆ y i ‖ F , with y i 
epresents the generated frame and ˆ y i represents the true frame.

ig. 8 indicates that the proposed framework has smallest error on

ost frames of each expression, except for several frames in the

eginning and at the end of the expression. Our method performs

etter because the method can preserve the source expression’s

emporal characteristics. In the beginning of an expression, the

roposed method might lose its superiority to other methods

ecause the temporal constraint can be weak due to the small
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Fig. 11. The result of the performance-driven facial animation (angry expression), (a) the source expression (b) the target expression. 

Fig. 12. The result of the performance-driven facial animation (fear expression), (a) the source expression (b) the target expression. 

Fig. 13. The result of the performance-driven facial animation (happy expression), (a) the source expression (b) the target expression. 
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intensity of face variation. The same thing happens at the end of

an expression sequence. Though the error of our approach fluc-

tuates between 10 −10 and 10 −2 , it would not influence the visual

appearance of the generated target expression due to the small

magnitude. 

4.3. The adaptability of the framework to face driving 

We generate 50 pairs of faces, with each pair includes a source

face and a target face, and ask the animator to pick up an op-

timized set of feature points from the target face as labels, then

we conduct face driving using the proposed framework. Each face

have 6174 vertices and the number of feature points are designated
s 80. The driving results of 4 randomly selected source faces by

arious approaches are demonstrated in Fig. 9 where (a) denotes

BF interpolation, (b) denotes Laplacian method, (c) corresponds

o the proposed framework and (d) means the ground truth. We

iscover from Fig. 9 that RBF interpolation cannot generate decent

esults, especially when the mouth of target face is open. This

s because the RBF interpolation is based on Euclidean distance

etric between feature points and other vertices, and Euclidean

istance sometimes cannot correctly reflect the true distance

etween two vertices. Our framework and Laplacian method share

imilar results, but our results are closer to the true target faces.

he reason is that the topology constraint is imposed on each local

tructure of the face. On the contrary, the constraint of Laplacian
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Fig. 14. The result of the performance-driven facial animation (disgust expression), (a) the source expression (b) the target expression. 
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ethod is imposed on each vertex of the face, so the coordinates

f adjacent vertices may have large deviation. 

Fig. 10 plots the error of 50 face driving tests where we can

nd that the proposed framework has highest accuracy compared

ith RBF interpolation and Laplacian approach, and this manifests

he adaptability of the proposed framework to face driving. 

.4. The visual effect of the performance-driven facial animation 

We demonstrate the visual effect of performance-driven facial

nimation based on the proposed framework. Specifically, we cre-

te four source faces and four target faces through 3Ds Max, with

ach face has 6174 vertices and realistic textures. For each source

ace, we build an expression sequence which includes 100 face

odels demonstrating different extent of this expression. Then we

ynthesize 10 face models as labels based on RBF interpolation us-

ng the source face and a target face as interpolation condition. We

elect 80 facial feature points from each face model to construct

ource expression, and perform facial expression retargeting based

n these facial feature points. At last, we use the synthesized target

xpression to drive the target face to generate expression defor-

ation. The experiment is repeated four times for the four source

xpressions, and 8 frames of selected driving results of four typical

xpressions are shown in the Figs. 11–14 . The four figures show

hat our proposed framework can generate decent facial expression

nd is very suitable for performance-driven facial animation. 

. Conclusion 

This paper reports a semi-supervised framework for

erformance-driven facial animation. This framework unifies

he approaches to facial expression retargeting and face driving

nto a semi-supervised data transformation method, which uses

ocal data structures’ tangent coordinates to construct topology

onstraints and assigns labels for a few selected data points as

rior knowledge. We propose algorithms for both facial expression

etargeting and face driving based on the framework. Compared

ith several existing methods, this framework not only achieves

ecent facial expression retargeting without the support from

ny sample data, but also obtains better face driving results. The

esults of the performance-driven facial animation have excellent

isual appearance, this indicates that the proposed framework has

otential applied value in character animation generation. 
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