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Abstract—Drug-Target Interaction (DTI) prediction plays an
important role in drug discovery and drug repurposing. DTI
prediction is usually modeled as a binary classification problem.
Unlike previous studies which label unknown DTIs as negative
samples, we assume the unknown DTIs are labels that are missing
not at random. For example, negative DTI labels are more
likely to be missing because biomedical researchers prioritize to
study DTIs that are more likely to be positive. We introduce
a novel probabilistic model, Factorization with Non-random
Missing Labels (FNML), for DTI prediction. FNML models
the generative process for the DTI labels (i.e. the labels are
positive or negative) and responses (i.e. the labels are observed
or missing). In particular, the probability of observing or missing
a label is associated with the sign of the label. We also conduct
comprehensive experiments to validate the robust performance
of the proposed models.

Index Terms—Missing Not At Random, Drug Target Interac-
tion Prediction, Probabilistic Factor Models

I. INTRODUCTION

Drug-Target Interaction (DTI) is fundamental to drug dis-
covery and design. As biochemical experimental methods for
DTI identification are extremely costly and time-consuming,
computational DTI prediction methods have received a grow-
ing popularity in literature. Traditional computational methods
to predict DTIs mainly include ligand-based methods [1] and
molecule docking methods [2]. Ligand-based methods are
ineffective when target proteins have little binding ligands ,
while molecular docking methods are computationally costly
and fail to offer accurate predictions when 3D structures of tar-
get proteins are not available [3]. To overcome these problems,
many machine learning-based methods have been proposed
for inferring DTI. The majority of existing machine learning-
based methods treat DTI prediction as a binary classification
task, where known DTIs are labeled as positive and unknown
DTIs are labeled as negative [4]. To address the imbalanced
problem arised from the binary classification scheme, many
research has attempted to extract a subset of reliable negative
samples, e.g. by random sampling [5] or by Positive Unlabel
Learning (PU Learning) [6].

Instead of labeling the unknown DTIs as negative, we argue
that it is more natural to consider the unknown DTIs, i.e.
DTIs that are neither identified in vivo to be positive nor
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experimentally validated to be negative (non-interacting drug-
target pairs), as missing labels. Furthermore, our assumption
in this work is that labels are not missing at random. This is an
intuitive and reasonable assumption, because researchers will
use their domain expertise to filter DTIs with a high possibility
to be positive and prioritize validations for these DTIs in vivo.
For example, researchers find the efficacy target of a drug
based on principles of biochemistry, biophysics, genetics and
chemical biology. If ample evidences exist to support positive
interactions with the target, then the possibility of a positive
DTI is high, and the researchers are likely to conduct in vivo
experiments. On the contrary, drug target interactions that are
less likely to be positive are more likely to be ignored by
researchers and their labels are likely to be missing.

A. Contribution

Our contribution in this work is a novel Factorization
with Non-random Missing Labels model (FNML). To the
best of our knowledge, this is the first time missing not at
random theory is applied in DTI identification. The inputs of
FNML are feature vectors of drugs and targets, the partially
observed labels, and the fully observed responses (i.e. labels
are given or missing). We allow the feature vectors to be learnt
and/or integrated from heterogenous sources. The labels and
responses are binary variables. The FNML model mimics the
probabilistic procedures to generate labels from feature vectors
and responses from labels. Specifically, the labels are related
to feature vectors of both drugs and targets, and a hidden
matrix mapping from the drug features to target features. The
possibility of giving a response is associated with the sign of
the label.

We conduct comprehensive experiments on the latest DTI
database. Experimental results show that the FNML model
outperforms state-of-the-art DTI prediction methods in terms
of Area Under Receiver Operating Characteristic curve (AU-
ROC) and Area Under Precision Recall curve (AUPR), which
are the most commonly adopted metrics to evaluate DTI
prediction performance. We also show that our models provide
robust performance enhancement, despite of the input features.
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B. Related Work

One component of our work (i.e labels are generated by
feature vectors learnt and fused from heterogenous information
networks) is inspired by a recent work DTINet [5]. However,
there are three key differences between our work and DTINet.
(1) DTINet is based on deterministic matrix factorization, our
work is based on probabilistic factor models. For example, the
hidden feature space mapping matrix, labels, and responses
are all random variables. This setting enables the FNML
model to regulate the parameters (i.e. hidden feature space
mapping matrix) by introducing appropriate priors. Therefore,
performance on sparse dataset is improved. (2) DTINet is
based on randomly missing responses, i.e. it samples uniformly
a set of unknown DTIs as negative sample, while FNML is
based on missing not at random theories. Statistical theory
in [7] shows that applying a model based on missing at random
assumptions can lead to biased parameter estimation on data
sets with missing not at random entries. (3) DTINet adopts
only a subset of unknown DTIs to preserve a balanced number
of positive and negative samples, while our model uses all
information in the data set.

We also want to distinguish our work with another line
of research. Usually only positive DTIs are deposited in
known databases. Due to the lack of negative samples, PU
learning has been employed in DTI identification, e.g. to
facilitate negative sample extraction [6]. PU learning does not
explicitly associate the status of an instance (i.e. being labeled
or unlabeled) with the value of its label. We also want to
mention here that, although we experiment with datasets where
only positive DTIs are deposited, FNML is extendable without
difficulty to databases where positive and negative DTIs are
available. Thus our model is applicable in more scenarios.

II. THE PROPOSED METHOD

We start with the problem definitions and notations in
Sec. II-A. We then describe the proposed model FNML
in Sec. II-B. Finally we present the inference algorithm in
Sec. II-C.

A. Preliminaries

DTI identification is often modeled as a binary classification
task. Formally, we are given P ∈ RN×M a set of DTI labels,
where pi,j = 0 indicates a negative interaction between drug
i and target j, pi,j = 1 indicates a positive DTI, the feature
vectors on drug side X ∈ RN×K , where xi,k represents drug
i’s weight on drug feature k, the feature vectors on target side
Y ∈ RM×L, where yj,l represents target j’s weight on target
feature l. The problem is to predict for a new drug-target pair
< i′, j′ >, the possibility of a positive DTI p(pi′,j′ = 1).

Similar to DTINet [5], we use a compact feature expression
learnt from drug and protein networks. To extract features
X,Y , we first create networks that involve drugs (for X) and
proteins (for Y ). We compute similarity score between each
pair of nodes in the networks. Then, the diffusion component
analysis (DCA) [8] is applied to learn a low-dimensional
vector representation of each node of the drug network and
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Fig. 1. Graphical Representation of the FNML model

protein network. Note here that X,Y can be extracted from
a single network or an aggregation of several networks. The
details of feature extraction are described in Sec. III.

In addition to the features X,Y and labels P , we make one
essential modification to the problem definition. We assume
that the inputs also contain responses R ∈ RN×M , where
Ri,j = 0 indicates an unknown DTI, Ri,j = 1 indicates
a verified DTI (positive or negative). For positive responses
Ri,j = 1, the labels Pi,j are observed. For negative responses
Ri,j = 0, the labels are hidden and unknown.

B. FNML Model

We use a factor model, which is depicted in Fig. 1. The
features X,Y are in different dimensions. To associate the
drug features with the target features, we introduce a hidden
matrix Z ∈ RK×L, where Zk,l is a projection that maps the
drug feature k to the target feature l. We assume that Z is
sampled from a Gaussian distribution,

∀k, l, Zk,l ∼ N (0, σ2), (1)

where σ2 is the variance. We use zero mean to favor sparse
feature mapping, i.e. a drug feature k is associated with a few
target features.

We then assume that the binary label Pi,j is generated from
the following process:

∀i, j, p(Pi,j = 1|X,Y, Z) =
1

1 + exp (−XZY )i,j
. (2)

The binary response is sampled from a Bernoulli distribution.
The parameters of the Bernoulli distribution are related to the
value of each Pi,j . Therefore we define βp ∈ R2, p ∈ {0, 1},
∀p, βp,0 > 0, βp,1 > 0, βp,0 + βp,1 = 1, we have:

∀p ∈ {0, 1}, βp ∼ Beta(η), (3)
∀i, j, Ri,j ∼ Bern(βPi,j ,1), (4)

where η ∈ R2 is the hyperparameter for the Beta distribution.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 27,2023 at 03:00:47 UTC from IEEE Xplore.  Restrictions apply. 



498

C. Inference

The objective is to maximize the log-likelihood which
consists of two terms. The first term is on partial observations,
i.e. Ri,j = 0 and Pi,j unknown. The second term is on full
observations, i.e. Ri,j = 1 and known Pi,j .

L =
∑

Ri,j=0

log p(Ri,j |X,Y, σ2, η)

+
∑

Ri,j=1

log p(Ri,j , Pi,j |X,Y, σ2, η) (5)

Direct optimization for both terms in Equ. 5 is
intractable, as they involve integration over continu-
ous hidden variables. For example, p(R|X,Y, σ2, η) =∫
P,Z,β

p(R|P, β, η)p(P |X,Y, Z)p(Z|σ2)p(β|η). We employ
variational inference [9] to infer the parameters. That is,
we use the mean field assumption to factorize the posterior
distribution:

q(Z, β, P |R,X, Y, σ2, η) = q(P |θ)q(Z|μ, υ)q(β|ρ), (6)

It is convenient if q(P |θ), q(Z|μ, υ), q(β|ρ) are exponential
distributions. We approximate the sigmoid function in Equ. 2
by an exponential distribution. We use the property that any
sigmoid function σ(·) has a lower bound:

q(P |θ) = σ(θ) ≥ σ(ζ) exp ((θ − ζ)/2− λ(ζ)(θ2 − ζ2)),
(7)

where λ(ζ) = [σ(ζ)− 1/2]/[2ζ].
Maximizing the likelihood is equivalent to maximizing

ELBO (Evidence Lower BOund):

L(q(Z, β, P )) = Eq(Z,β,P )[lnP (R,P, Z, β)]

− Eq(Z,β,P )[ln q(Z, β, P )]. (8)

We divide the data objects into two disjoint sets, s1 = {(i, j) ∈
RN×M |Ri,j = 1}, and s2 = {(i, j) ∈ RN×M |Ri,j = 0}.
First we derive the parameters μ, υ of ln q(Zk,l|μk,l, υk,l):

ln q(Zk,l|μk,l, υk,l) =
∑

(i,j)∈s1

Eq(β)[ln p(Ri,j , Pi,j , Z, β)]

+
∑

(i,j)∈s2

Eq(β,Pi,j)[ln p(Ri,j , Pi,j , Z, β)

+ const,

where const represents the irrelevant item. Removing irrele-
vant items we get:

ln q(Zk,l|μk,l, υk,l) = [
∑

(i,j)∈s2

[(θi,j − 1

2
)Xi,k ∗ (Y T )l,j ]

+
∑

(i,j)∈s1

1

2
Xi,k ∗ (Y T )l,j ]Zk,l

− (
∑
i,j

λ(ζij) ∗X2
i,k ∗ (Y T )l,j

2

+
1

σ2
) ∗ Z2

k,l

Since Zk,l follows a Gaussian distribution, the expectation and
variance of the Gaussian distribution can be obtained by:

μk,l =

∑
(i,j)∈s2

(θi,j − 1
2 )Xi,k ∗ Yj,l +

∑
(i,j)∈s1

1
2Xi,k ∗ Yj,l

2 ∗ (∑i,j λ(ζi,j)X
2
i,kY

2
j,l +

1
σ2 )

,

υk,l =
1√

2 ∗ (∑i,j λ(ζi,j)X
2
i,kY

2
j,l +

1
σ2 )

.

Next, we derive parameter ρ for ln(β|ρ):
ln q(β|ρ) =

∑
(i,j)∈s1

Eq(Z)ln p(Ri,j , Pi,j , Z, β)

+
∑

(i,j)∈s2

Eq(Z,Pi,j)ln p(Ri,j , Pi,j , Z, β) + const

Expanding the two items
∑

(i,j)∈s1
Eq(Z)ln p(Ri,j , Pi,j , Z, β)

and
∑

(i,j)∈s2
Eq(Z,Pi,j)ln p(Ri,j , Pi,j , Z, β), then removing

irrelevant items we have:

ln q(β|ρ) = (
∑

(i,j)∈s2

θi,jRi,j +
∑

(i,j)∈s1

Pi,jRi,j + η10 − 1) lnβ1

+ [
∑

(i,j)∈s2

θi,j(1−Ri,j) +
∑

(i,j)∈s1

Pi,j(1−Ri,j)

+ η11 − 1] ln(1− β1) + [
∑

(i,j)∈s2

(1− θi,j)Ri,j

+
∑

(i,j)∈s1

(1− Pi,j)Ri,j + η00 − 1] lnβ0

+ [
∑

(i,j)∈s2

(1− θi,j)(1−Ri,j)

+
∑

(i,j)∈s1

(1− Pi,j)(1−Ri,j) + η01 − 1] ln(1− β0)

Because β follows the Beta distribution, we have:

ρ0,0 = η0,0,

ρ0,1 =
∑

(i,j)∈s2

(1− θi,j) + η0,1,

ρ1,0 = |s1|+ η1,0,

ρ1,1 =
∑

(i,j)∈s2

θi,j + η1,1,

where |s1| is the number of elements in set s1. Next, we derive
parameter θ for ln(Pi,j |θi,j):
ln q(Pi,j |θi,j) = Eq(Z,β)[ln p(Ri,j , Pi,j , Z, β)]

= Pi,j ∗ ln[exp(Ri,j ∗ ψ(ρ1,0))
∗ exp[(1−Ri,j) ∗ ψ(ρ1,1)] ∗ exp(−ψ(ρ1,0

+ ρ1,1)) ∗ exp(XμzY )] + (1− Pi,j)

∗ ln[exp(Ri,j ∗ ψ(ρ0,0)) ∗ exp[(1−Ri,j)

∗ ψ(ρ0,1)] ∗ exp(−ψ(ρ0,0 + ρ0,1))]

we define:

l1 = exp(ψ(ρ1,1)− ψ(ρ1,0 + ρ1,1) +XiμY
T
j )

l2 = exp(ψ(ρ0,1)− ψ(ρ0,0 + ρ0,1))
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Then we get the estimated value of θi,j = l1
l1+l2

. Finally, for
variational parameters ζ, we maximize Equ. 9:

lnσ(ζi,j)− ζi,j
2

− λ(ζi,j)[(XiZY T
j )2 − (ζi,j)

2] (9)

Making it equal to 0, we get the update formula:

ζi,j =
∣∣XiμY

T
j

∣∣ . (10)

As shown in Alg. 1, in each iteration of the inference
we alternatively optimize the variational parameters for
q(Z|μ, υ), q(β|ρ), q(P |θ) and the parameters for the lower
bound σ(ζ). In each iteration, we first obtain the optimal
θ, μ, v, ρ and then we update ζ. The iteration is repeated until
convergence is achieved.

input : P, R, X, Y
output: μ, υ, ρ, θ, ζ

1 initialization;
2 repeat
3 for Zk,l ∈ Z do
4 μk,l ←∑

(i,j)∈s2
(θi,j− 1

2 )Xi,k∗Yj,l+
∑

(i,j)∈s1

1
2Xi,k∗Yj,l

2∗(∑i,j λ(ζi,j)X2
i,kY

2
j,l+

1
σ2 )

;

5 υk,l ← 1√
2∗(∑i,j λ(ζi,j)X2

i,kY
2
j,l+

1
σ2 )

;

6 end
7 for β do
8 ρ0,0 ← η0,0;
9 ρ0,1 ← ∑

(i,j)∈s2
(1− θi,j) + η0,1;

10 ρ1,0 ← |s1|+ η1,0;
11 ρ1,1 ← ∑

(i,j)∈s2
θi,j + η1,1;

12 end
13 for (i, j) ∈ s2 do
14 l1 = exp(ψ(ρ1,1)− ψ(ρ1,0 + ρ1,1) +XiμY

T
j );

15 l2 = exp(ψ(ρ0,1)− ψ(ρ0,0 + ρ0,1));
16 θi,j ← l1

l1+l2
;

17 end
18 for (i, j) ∈ s1 + s2 do
19 ζi,j ←

∣∣XiμY
T
j

∣∣;
20 end
21 until convergence;

Algorithm 1: Inference for FNML

III. EXPERIMENT

A. Experimental Setup

Datasets. We use the same datasets as in [5]: i.e. the drug-
target interaction labels are obtained from the latest version of
DrugBank (version 3.0) [10]. This data set is referred to as the
full data set. Only 0.18% of the drug-target interactions are
labelled as positive, none is labelled as negative. As in [5],
we also construct a sample dataset, where all the positive
interactions are reserved and an equal number of unknown
interactions are sampled to be negative. Statistics of the two
data sets are shown in Tab. I.

TABLE I
STATISTICS OF THE DATASETS

Data #Drugs #Targets #Positive #Negative #Unknown
Full 708 1,512 1,923 0 1,068,573
Sample 708 1,512 1,923 1,923 1,066,650

We use a variety of networks to extract features X,Y . The
default feature vectors X are extracted from drug structure
similarity network (denoted as ds), where the similarity score
between two drugs is calculated using the Tanimoto coeffi-
cient [11] according to their chemical structures; The default
feature vectors Y are extracted from protein sequence similar-
ity network (denoted as ps), which is constructed by computing
the Smith-Waterman score [12] of their primary sequences. In
order to evaluate model performance with different features,
we also use three extra drug networks: drug-drug interaction
network (dd) [10], the drug-disease network (di) [13], the
drug-side-effect network (de) [14] and two protein networks:
the protein-disease association network (pd) [13], the protein-
protein interaction network (pp) [15].

Evaluation. Throughout the experiment section, the ma-
jor evaluation metric is Area Under Precision Recall curve
(AUPR), which is commonly adopted in bioinformatic studies.
An auxiliary evaluation metric is Area Under ROC curve
(AUROC).

B. Results and Analysis

FNML Performance. We first evaluate the accuracy of DTI
prediction of the proposed FNML model. The hyper-parameter
settings are as follows. The number of dimensions for drug
features are K = 300, for target features L = 300, hyper-
parameters are σ2 = 1, η0 = 1, η1 = 1. In this experiment,
we use the default features X,Y . The code and data used in
FNML are available at: https://github.com/517515435/FNML

We compare our FNML model with 5 state-of-the-art
methods: (1) DeepWalk [16]: a similarity-based drug-target
prediction method that enhances similarity computation by
deep learning method within a linked tripartite network. (2)
HNM [17]: a network model in which strength between a
disease-drug pair is calculated through an iterative algorithm
on the heterogeneous graph that also incorporates drug-target
information. (3) NetLapRLS [18]: a manifold regularization
semi-supervised learning method. (4) PUDTI [6]: an SVM-
based optimization model that is trained on negative samples
extracted based on positive-unlabeled learning. (5) DTINet [5]:
a regression model that learns feature space mapping Z by the
loss function minZ

∑
i,j(Pi,j−(XZY )i,j)

2. We do not change
the default settings for all the above comparative methods.

In order to maintain the same experimental setup as [5], we
perform the evaluation on two datasets. The first one is on the
full dataset, i.e. we randomly segment the whole data set to
10 divisions and conduct 10-fold cross-validation. The second
one is on the sample dataset, i.e. keeping the ratio of positive
and negative samples to 1 : 1, we conduct random sampling
for 10 times and the reported results are averaged over the 10
sets.
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Fig. 2. On the full dataset, FNML significantly boosts AUPR while obtaining
comparable AUROC.

The comparative performance on the full dataset is shown in
Fig. 2. We can see that (1) FNML model significantly boosts
the AUPR performance by 49.32%, compared with the best
of state-of-the-art methods. The best comparative method is
DTINet, which achieves a 30.29% AUPR. Our FNML model
obtains a 45.23% AUPR. As AUPR is well regarded to be a
more robust and accurate evaluation metric than AUROC [5],
this observation demonstrates the potential of our model. (2)
Most of the state-of-the-art methods yield very low AUPR
results on the full dataset. This observation again reveals that
obtaining a high AUPR performance is challenging on the full
dataset. (3) In term of AUROC, the best result is obtained by
NetLapRLS. However, the best comparative result is 91.78%,
while FNML produces a comparable 91.12% AUROC.
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Fig. 3. On the sample dataset, FNML outperforms state-of-the-art methods
in terms of both AUPR and AUROC.

The comparative performance on the sample dataset is
shown in Fig. 3. We can see that (1) FNML model achieves
a better AUPR than all state-of-the-art methods. The best
comparative method is DTINet, which achieves 93.20%. Our
FNML model obtains a 94.66% AUPR. (2) Most of the state-
of-the-art methods have a higher AUPR result on the sample
dataset than the full dataset, due to the balanced ratio of
positive and negative samples. (3) FNML model outperforms
all state-of-the-art models in AUROC performance. The best
comparative method is again DTINet, which achieves 91.41%.
Our FNML model obtains a 92.93% AUROC. (4) Surprisingly,
DeepWalk has a lowest AUPR performance on the sample set.
A possible reason is that the network representation extracted
by deepwalk is based on homogeneous network structure, and
thus is not accurate.

FNML Performance with Different Features. We next
study how FNML model performs with different features.
We use various combination of X and Y as inputs. That is,
we extract X from the four networks on the drug side (i.e.
dd,di,de,ds) respectively, extract Y from the three networks

on the protein side (i.e. pp, pd, ps) respectively, and use the
12 combinations as inputs to train the model. The predictions
are tested on the full dataset.

We compare the AUPR and AUROC performance of FNML
and DTINet. As shown in Fig. 4, FNML outperforms DTINet
in most cases. FNML generates better AUPR results for 10
feature combinations out of 12. In term of AUROC, FNML
is better for 7 feature combinations. The result shows that
the performance improvement is stable. Change of feature
representations does not affect FNML’s ability to learn a better
feature mapping space.
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Fig. 4. FNML model consistently outperforms DTINet with different feature
inputs.

Number of dimensions. We next study the effects of
number of dimensions K,L. We first fix L = 300 and tune
from K = 100 to K = 500.We can see from Fig. 5(a) that
the best number of drug features is around 300. Then, we fix
K = 300 and tune from L = 100 to L = 500. As shown
in Fig. 5(b), the best number of target features is 300. An
appropriate number of drug features is important. When the
number of drug features is too large or too small i.e. K ≥ 400
or K ≤ 200, we observe a descent fall in both AUPR and
AUROC. However, the model performance is less sensitive
to the number of target features. For L > 300, AUPR and
AUROC remain the same.

IV. CONCLUSION

We propose a novel DTI prediction model based on the
assumption that unknown DTI labels are missing not at
random. By associating the status of a DTI being labelled
or unknown to the sign of the DTI label, our proposed FNML
model can learn a better feature mapping from drug feature
space to target feature space. We experimentally demonstrate
that FNML outperforms state-of-the-art computational DTI
identification methods. This work sheds some insights into
fully exploiting the information in unknown DTIs. Our future
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Fig. 5. AUPR and AUROC performance of our model with different number
of drug and protein features.

directions include analyzing the missing mechanisms and
enhancing the DTI prediction performance by an ensemble
scheme.
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