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Abstract

Support vector clustering (SVC) is a versatile clus-
tering technique that is able to identify clusters of ar-
bitrary shapes by exploiting the kernel trick. However,
one hurdle that restricts the application of SVC lies in
its sensitivity to the kernel parameter and the trade-off
parameter. Although many extensions of SVC have been
developed, to the best of our knowledge, there is still
no algorithm that is able to effectively estimate the two
crucial parameters in SVC without supervision. In this
paper, we propose a novel support vector clustering ap-
proach termed ensemble-driven support vector cluster-
ing (EDSVC), which for the first time tackles the au-
tomatic parameter estimation problem for SVC based
on ensemble learning, and is capable of producing ro-
bust clustering results in a purely unsupervised manner.
Experimental results on multiple real-world datasets
demonstrate the effectiveness of our approach.

1 Introduction

Support vector clustering (SVC) is a flexible cluster-
ing technique which is inspired by support vector ma-
chines (SVM) [2]. In SVC, the input data points are first
mapped from the original space to a high-dimensional
kernel space, where a sphere that encloses most of the
data points is constructed. When mapped back to the
original space, the sphere is split into several compo-
nents, each of which encloses a set of data points and
forms a cluster in the clustering result. With the nonlin-
ear mapping, SVC has two major advantages over the
other clustering techniques. First, it is capable of iden-
tifying clusters of arbitrary shapes. Second, the number

of clusters can be obtained automatically in SVC and
needn’t to be specified in advance.

Ben-Hur et al. [2] for the first time introduced
the SVC technique, which consists of two phases, i.e.,
sphere construction and cluster labeling. As both of the
two phases are time-consuming, some efforts have been
made to improve the efficiency of SVC in recent years.
To speedup the sphere construction process, Wang et al.
[19] proposed the incremental support vector clustering
(ISVC) approach which is able to compute the support
vectors (SVs) incrementally and construct the sphere ef-
ficiently. Huang et al. [6] extended ISVC by introduc-
ing an outlier detection mechanism based on dynamical
management of bounded support vectors (BSVs). To
improve the efficiency of cluster labeling, Lee and Lee
[10] exploited the topological property of the trained
kernel radius function to assign cluster labels. Ping et
al. [15] introduced an adaptive labeling strategy that
decomposes clusters into convex hulls, and proposed a
fast and scalable SVC (FSSVC) approach. Besides the
efficiency, another focus of the SVC research is on its
applications. Wang et al. [20] utilized a SVC-based
approach to solve the data stream clustering problem.
Boecking et al. [3] combined SVC with a triangular
alignment kernel and used it for time series clustering.
Sun et al. [17] developed a SVC-based model to de-
scribe clusters of images with manually tagged words,
which is further exploited to deal with automatic or
semi-automatic image annotation problems.

Although many SVC based approaches have been
developed in recent years [3, 6, 10, 15, 17, 19, 20],
most of the existing approaches, if not all, still suf-
fer from a common drawback, i.e., the difficulty in se-
lecting proper parameters. Typically, there are two pa-
rameters in SVC, namely, the kernel parameter and the
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trade-off parameter. The kernel parameter decides how
data points are mapped to high-dimensional space and
thereby controls the shapes of cluster contours in the
data space. The trade-off parameter adjusts the gener-
ation of bounded support vectors (BSVs) which signif-
icantly affects the ability for SVC to deal with noisy
data. These two parameters together impose a great in-
fluence on the clustering performance of SVC. How-
ever, the existing SVC approaches [3, 6, 10, 15, 17, 19,
20] generally lack the ability to automatically estimate
these two parameters and need to tune the parameters in
a supervised manner, i.e., implicitly or explicitly need
access to the ground-truth knowledge. To partially ad-
dress this problem, Wang and Lai [18] proposed a po-
sition regularized support vector clustering (PSVC) ap-
proach, which eliminates the selection of the trade-off
parameter, yet is still unable to select the kernel param-
eter effectively and unsupervisedly. It remains a very
challenging and unsolved problem how to automatically
and properly select the two parameters for SVC in an
unsupervised manner.

To tackle this problem, in this paper, we propose
an ensemble-driven support vector clustering (EDSVC)
approach, which, to the best of our knowledge, is the
first algorithm that is capable of automatically estimat-
ing the aforementioned two crucial parameters for SVC
in a purely unsupervised manner. Our approach is based
on the ensemble clustering technique [4, 5, 7, 8, 9, 11,
12, 13, 14, 21, 22], which has proved to be a power-
ful tool to accumulate information from multiple (weak)
clusterings. The ground-truth can be viewed as an ex-
pert, while the ensemble of multiple clusterings can be
viewed as a crowd a individuals. Without the expert, we
appeal to the wisdom of the crowd and learn the param-
eters under the guidance of a crowd of individual clus-
terings. By exploiting an ensemble learning-based strat-
egy, our approach can automatically estimate the kernel
parameter and the trade-off parameter and thereby ob-
tain robust clustering results without supervision. Ex-
perimental results on multiple real-world datasets show
the effectiveness of the proposed EDSVC approach.

The rest of this paper is organized as follows. The
proposed EDSVC algorithm is introduced in Section 2.
The experimental results are reported in Section 3. Fi-
nally, we conclude this paper and discuss the future
work in Section 4.

2 Proposed Framework

In this section, we introduce the proposed cluster-
ing framework. First, we introduce the SVC process in
Section 2.1. Then, in Section 2.2, we describe the gen-
eration of an ensemble of multiple clusterings, which is

further exploited to guide the parameter estimation pro-
cess. Finally, we summarize the overall algorithm of
EDSVC in Section 2.3.

2.1 Support Vector Clustering

Let X = {x1, · · · , xN} be a data set, where xi ∈ Rd
is the i-th data point and N is the number of data points
in X . By a nonlinear transformation Φ, the data points
in X are mapped to a high-dimensional space and the
smallest enclosing sphere with radius R is found. That
is

‖Φ(xi)− µ‖2 = R+ ξi,∀i = 1, . . . , N, (1)

where µ is the center of the sphere and ξi ≥ 0, for
i = 1, . . . , N , are the slack variables which incorpo-
rates soft constraints.

To solve the problem in Eq.(1), the Lagrangian is in-
troduced as follows:

L = R2 −
∑
i

(R2 + ξi − ‖Φ(xi)− µ‖2)βi

−
∑

ξiαi + C
∑

ξi, (2)

where βi ≥ 0 and αi ≥ 0 are Lagrange multipliers, C
is a constant and C

∑
ξi is the penalty term. By setting

the derivative of L w.r.t. R, µ, and ξi, respectively, to
zero, we have∑

i

βi = 1, µ =
∑
i

βiΦ(xi), βi = C − αi. (3)

The KKT complementary conditions result in

ξiαi = 0, (R2 + ξi − ‖Φ(xi)− µ‖2)βi = 0. (4)

Then, we eliminate the variables R, µ, ξi and αi, and
turn the Lagrangian into the Wolfe dual form. That is

max
βi

W =
∑
i

K(xi, xi)βi −
∑
i,j

βiβjK(xi, xj) (5)

s.t.
∑
i

βi = 1, 0 ≤ βi ≤ C,∀i = 1, . . . , N,

where the dot product Φ(xi) · Φ(xj) is represented by
the Gaussian kernel K(xi, xj) = exp(−q‖xi − xj‖2)
with width parameter q.

With regard to the values of the Lagrangian multi-
pliers βi, there are two types of representative points.
The points with 0 < βi < C are termed support vectors
(SVs) which lie on the sphere surface. The points with
βi = C are termed bounded support vectors (BSVs)
which lie outside the sphere and are usually treated as
outliers. Obviously, there will be no BSV when setting
C ≥ 1.
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In SVC, the cluster boundaries are delineated by ex-
ploiting the SVs, and the data points can be assigned
with cluster labels by means of various cluster label-
ing techniques [2, 10]. After cluster labeling, the final
clustering result of SVC can be obtained. Formally, we
denote the function of the SVC process as follows:

π∗(q,C) = SV C(X , q, C), (6)

where X is the input data, q is the kernel parameter, C
is the trade-off parameter, and π∗(q,C) is the clustering
result by SVC with parameters q and C.

2.2 Ensemble Generation

In the existing SVC-based approaches [3, 6, 10, 15,
17, 19, 20], the kernel parameter and the trade-off pa-
rameter are generally selected by some trial and error
strategy, which explicitly or implicitly needs access to
the ground-truth knowledge. Different from these meth-
ods, in this paper, we propose to automatically estimate
the parameters for SVC in a purely unsupervised man-
ner. Instead of using ground-truth knowledge, we take
advantage of the ensemble clustering technique and es-
timate parameters with the help of a diverse set of clus-
terings.

Ensemble clustering is a clustering technique that
aims to combine multiple clusterings into a probably
better and more robust clustering [4, 5, 7, 8, 11, 12, 13,
14, 21, 22]. Each of the input clusterings is referred to
as a base clustering, which in fact can be generated by
any clustering algorithms. In this paper, we generate
the ensemble of multiple base clusterings by k-means.
For the generation of each base clustering, the number
of clusters for k-means is randomly selected in the in-
terval of [2, 3

√
N ], whereN is the number of data points

in the dataset X . Formally, the ensemble of base clus-
terings is denoted as

Π = {π1, · · · , πM}, (7)

where πi denotes the i-the base clustering in the en-
semble Π, and M denotes the number of base cluster-
ings in Π. Without loss of generality, in this paper, we
use M = 10 base clusterings. Each base clustering is
a partition of the original dataset. With the ensemble
generated by random initializations and random num-
ber of clusters, a single base clustering (i.e., an ensem-
ble member) may be unstable (or low-quality), but the
crowd of diverse members can provide different views
of the data and may together provide reliable informa-
tion about the inherent cluster structures. We argue that
the ensemble of multiple clusterings can form a robust

guidance for the process of unsupervised parameter es-
timation, which will be described in detail and demon-
strated by extensive experiments in the following sec-
tions of this paper.

2.3 Overall Algorithm

In this paper, we aim to estimate the kernel parameter
and the trade-off parameter with the help of an ensem-
ble of multiple clusterings and thereby to achieve ro-
bust clustering results in an unsupervised manner. Our
work is partially inspired by the idea of “the wisdom of
crowds”, which is the process of taking into considera-
tion the opinion of a crowd of individuals rather than a
single expert in the field of economic and social science.
In our approach, without ground-truth labels, we appeal
to the crowd of multiple base clusterings to assess the
clustering performance of SVC with different parame-
ter settings. Specifically, we evaluate the quality of the
output clusterings generated by SVC using different pa-
rameters q and C, and aim to find the best parameters
automatically. The first task here is to define an unsu-
pervised criterion to evaluate the output clusterings.

The normalized mutual information (NMI) [16] pro-
vides a sound indication of the shared information be-
tween two clusterings and is widely used for evalu-
ating the quality of clusterings. Generally, the NMI
score is computed between a test clustering and the
ground-truth clustering so as to evaluate the quality of
the test clustering. However, in the unsupervised set-
ting of this work, the ground-truth information is not
available. Instead of using the ground-truth, we pro-
pose to evaluate the quality of a candidate clustering
with the help of an ensemble of multiple clusterings.
Let π∗(q,C) = SV C(X , q, C) be a candidate clustering
generated by SVC with the kernel parameter q and the
trade-off parameter C. The average NMI score is com-
puted between the clustering π∗(q,C) and the ensemble
Π. That is

ANMI(π∗(q,C),Π) =
1

M

∑
πi∈Π

NMI(πi, π∗(q,C)),

(8)
where NMI(πi, π∗(q,C)) denotes the NMI score be-
tween two clusterings πi and π∗(q,C), and M is the num-
ber of base clusterings in Π.

With the evaluation criterion defined in Eq. (8), we
can evaluate the clustering results produced by SVC
with different parameters. Specifically, we aim to find
the optimal parameters q̂ and Ĉ that maximize the av-
erage NMI between the ensemble Π and the clustering
result produced by SVC. That is

(q̂, Ĉ) = arg max(q,C)ANMI(π∗(q,C),Π). (9)
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In this paper, we solve the optimization problem in
Eq. (9) by evaluating a set of candidate values. Let
Q = {q1, · · · , qnq

} be a set of nq candidate values for
the parameter q. Let C = {C1, · · · , Cnc

} be a set of
nc candidate values for the parameter C. In this paper,
we use nq = 100 values for q and nc = 100 values for
C. Of the two parameters q and C, one parameter is
optimized by fixing the other one, and vice versa. First,
by fixing the parameter C = C0, we test the candidate
values in Q for the parameter q and find the best value
q̂ that optimized Eq. (9). Then, by fixing the parameter
q = q̂, we test the candidate values in C for the param-
eter C and find the optimal value Ĉ. With the optimal
parameters obtained by Eq. (9), the final clustering re-
sult is generated by SVC using the estimated parameters
q̂ and Ĉ.

For clarity, the proposed EDSVC algorithm is sum-
marized in Algorithm 1.

Algorithm 1 (Ensemble-Driven Support Vector
Clustering)
Input: X = {x1, · · · , xN}

1: Generate the ensemble Π = {π1, · · · , πM}:
for i = 1, 2, · · · ,M

Select k randomly in the interval of [2, 3
√
N ].

Build the i-th base clustering πi using k-means.
end for

2: Unsupervised parameter estimation:
By fixingC = C0, find the optimal q̂ inQw.r.t. Eq. (9).
By fixing q = q̂, find the optimal Ĉ in C w.r.t. Eq. (9).

3: Obtain the clustering result by SVC using the estimated
parameters q̂ and Ĉ:
π̃ = SV C(X , q̂, Ĉ)

Output: the final clustering π̃.

3 Experiments

In this section, we conduct experiments on multi-
ple real-world datasets to evaluate the performance of
the proposed EDSVC approach. We first introduce the
datasets and the evaluation metric in Section 3.1. Then
we compare EDSVC against the base clusterings in the
ensemble Π, against four ensemble clustering methods,
and against position regularized support vector cluster-
ing (PSVC) [18], in Section 3.2, Section 3.3, and Sec-
tion 3.4, respectively.

3.1 Datasets and Evaluation Metric

In this paper, the experiments are conducted on six
real-world datasets, namely, Wine, Ionosphere, Breast
Cancer (BC), Banknote Authentication (BA), Yeast, and
Semeion. The six datasets are publicly available at the

Table 1. Description of datasets
Dataset #Object #Attribute #Class

Wine 178 13 3
Ionosphere 351 34 2

BC 683 9 2
BA 1,372 4 2

Yeast 1,484 8 10
Semeion 1,593 256 10

UCI machine learning repository [1]. The details of the
benchmark datasets are given in Table 1.

In the experiments, the normalized mutual informa-
tion (NMI) [16] is used to evaluate the quality of clus-
terings. The NMI score provides a sound indication of
the shared information between clusterings. A higher
NMI indicates a better clustering result.

3.2 Comparison Against Base Clusterings

In this paper, we propose the EDSVC approach
which bridges the gap between ensemble clustering and
support vector clustering. For each benchmark dataset,
an ensemble of multiple base clusterings is exploited to
guide the SVC process. The purpose is to utilize the
information of multiple clusterings to obtain a probably
better and more robust clustering result. In this section,
we compare the clustering results of EDSVC against the
average performance of the base clusterings. As can be
seen in Fig. 1, the EDSVC approach is able to produce
significantly better clustering results (in terms of NMI)
than the base clusterings on all of the six benchmark
datasets.

Wine Ionosphere BC BA yeast Semeion

N
M

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

EDSVC
Base Clusterings

Figure 1. Comparing EDSVC with the base
clusterings in terms of NMI.
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Table 2. The performance (in terms of NMI) of EDSVC compared against the ensemble cluster-
ing approaches. The best score in each column is highlighted in bold.

Method Wine Ionosphere BC BA Yeast Semeion

EDSVC 0.781 0.184 0.525 0.266 0.267 0.461

COMUSA [13] 0.580 0.080 0.219 0.128 0.150 0.122
DICLENS [12] 0.611 0.067 0.369 0.205 0.184 0.326

COMUSACL [14] 0.671 0.164 0.480 0.232 0.204 0.373
COMUSACL-DEW [14] 0.703 0.134 0.494 0.212 0.264 0.344
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Figure 2. Comparing the performances of EDSVC and PSVC [18] (with varying parameter q) on
the benchmark datasets. Note that the X axis corresponds to log2 q.

3.3 Comparison Against Ensemble Clustering
Methods

In this section, we compare EDSVC against
four state-of-the-art ensemble clustering approaches,
namely, COMUSA [13], DICLENS [12], COMUSACL
[14], and COMUSACL-DEW [14]. To provide a fair
comparison, on each benchmark dataset, the same en-
semble of clusterings are used for both EDSVC and
the ensemble clustering approaches. The performances
of EDSVC and the four baseline approaches in terms
of NMI are reported in Table 2. Our EDSVC ap-
proach outperforms the baseline ensemble clustering
approaches on all of the six benchmark datasets. Es-
pecially, for the Wine, Ionosphere, BA, and Semeion
datasets, our approach yields significantly better perfor-

mance than the baseline approaches.

3.4 Comparison Against PSVC

In this section, we further compare EDSVC against
the position regularized support vector clustering
(PSVC) approach [18]. The PSVC approach eliminates
the trade-off parameter C, but is still unable to automat-
ically estimate the kernel parameter q. In comparison,
our EDSVC approach is capable of automatically esti-
mating q and C and producing robust clustering results.
Because PSVC cannot determine the parameter q auto-
matically, we illustrate the NMI scores of our EDSVC
and that of PSVC w.r.t. varying q in Fig. 2. As can
be seen in Fig. 2, the clustering performance of PSVC
is sensitive to the kernel parameter q. Even when the
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best q is selected for PSVC on each benchmark dataset,
our EDSVC approach can still produce consistently bet-
ter clustering results than PSVC, which demonstrates
the effectiveness of the proposed unsupervised parame-
ter selection strategy and the robustness of the proposed
EDSVC approach.

4 Conclusion and Future Work

In this paper, we propose a novel support vector clus-
tering (SVC) approach termed ensemble-driven support
vector clustering (EDSVC), which for the first time
tackles the problem of unsupervised parameter estima-
tion for SVC based on the ensemble clustering tech-
nique. Without needing access to the ground-truth, our
approach is able to automatically estimate the kernel pa-
rameter q and the trade-off parameter C under the guid-
ance of an ensemble of multiple base clusterings. We
conduct experiments on six real-world datasets. The
experimental results have demonstrated the superiority
of our approach over other ensemble-based and SVC-
based approaches. In the future work, we plan to de-
velop a scalable version of EDSVC and enable it to han-
dle the clustering problem of large-scale datasets.
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