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Abstract

Self Attention has shown the excellent performance in track-
ing due to its global modeling capability. However, it brings
two challenges: First, its global receptive field has less atten-
tion on local structure and inter-channel associations, which
limits the semantics to distinguish objects and backgrounds;
Second, its feature fusion with linear process cannot avoid
the interference of non-target semantic objects. To solve the
above issues, this paper proposes a robust tracking method
named GdaTFT by defining the Global Dilated Attention
(GDA) and Target Focusing Network (TFN). The GDA pro-
vides a new global semantics modeling approach to enhance
the semantic objects while eliminating the background. It is
defined via the local focusing module, dilated attention and
channel adaption module. Thus, it promotes semantics by fo-
cusing local key information, building long-range dependen-
cies and enhancing the semantics of channels. Subsequently,
to distinguish the target and non-target objects both with rich
semantics, the TFN is proposed to accurately focus the tar-
get region. Different from the present feature fusion, it uses
the template as the query to build a point-to-point correlation
between the template and search region, and finally achieves
part-level augmentation of target feature in the search region.
Thus, the TFN efficiently augments the target embedding
while weakening the non-target objects. Experiments on chal-
lenging benchmarks (LaSOT, TrackingNet, GOT-10k, OTB-
100) demonstrate that the GdaTFT outperforms many state-
of-the-art trackers and achieves leading performance. Code
will be available.

1 Introduction
Visual tracking is a fundamental task in computer vision,
aiming to predict the state of a target in video sequences
given its initial state. It has been widely used in various ap-
plications such as visual surveillance and autonomous driv-
ing. Many efforts have been done in recent years, however,
developing a robust and accurate tracker is still challenging
due to the various hinders such as rapid deformations, occlu-
sions and background clutters that often occur in tracking.

Recently, due to the good balance between accuracy and
speed, siamese network based trackers have drawn great at-
tention. These methods (Bertinetto et al. 2016; Li et al. 2018;
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Figure 1: Features of our GdaTFT. Compared with present
feature, our GDA distinguishes objects and background by
enhancing semantics. Then, our TFN further augments tar-
get embedding by weakening no-target semantic objects.

Chen et al. 2020; Guo et al. 2020) map the template and
the search region to the same feature space, and achieve
semantic-level feature matching through cross correlation to
locate the target. Therefore, it is critical to extract robust se-
mantic information in tracking. However, limited by fixed
operation mode of convolution and small receptive field,
these methods are difficult to extract semantic information
effectively. Thanks to the flexible adaptability comparing
to fixed weights of convolution, attention mechanism can
obtain the dynamic weights according to different inputs,
which helps to extract robust semantics. By introducing at-
tention mechanism, the methods (Wang et al. 2018; Choi
et al. 2017; Fu et al. 2021; Du et al. 2020) adaptively en-
hance feature with semantic information. But the challenge
raised by small receptive field remains unresolved, which
still limits the semantics extraction of feature. Therefore,
due to its excellent ability to build long-range dependen-
cies, self attention has been widely used in visual tracking.
It is introduced to perform global semantics modeling and
achieve feature fusion between template and search region
to replace cross correlation, which yields great performance
(Yan et al. 2021; Wang et al. 2021; Yu et al. 2021). However,
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even with its great success, those self-attention-based meth-
ods still suffer from the following two typical problems:

(1) Their global receptive field (Yu et al. 2020; Cui et al.
2021) brings less attention on local structural information
and ignores inter-channel associations, which limits the se-
mantics that can effectively distinguish objects and back-
grounds. (2) These methods (Guo et al. 2021; Wang et al.
2021) take the feature of search region as query to perform
linear-process on the template feature, and use feature fusion
to enhance the target embedding. This process is difficult to
enhance target embedding effectively and easy to introduce
noise from search region.These problems make features can-
not focus on target as the second column in Fig. 1.

To address the above issues, this paper proposes a robust
tracking method named GdaTFT by defining the Global Di-
lated Attention (GDA) and Target Focusing Network (TFN).
The GDA is proposed to achieve comprehensive feature se-
mantics extraction from both space and channel dimensions.
With the proposed dilated attention, it performs dilated sam-
pling on feature map to split it into different groups, and
then builds the global and sparse long-range dependencies
within these independent groups to enhance the semantics
of all objects. In addition, the GDA builds the inter-channel
associations to adaptively select and enhance channels with
rich semantics via our channel adaption module.

Furthermore, the TFN is defined to enhance the target em-
bedding on the semantics-enhanced search region feature
which is computed by the GDA. As Fig. 2, it takes tem-
plate as the query to transfer the target information from the
template to the search region and thereby obtains a point-to-
point similarity between them, which helps to weaken the
expression of non-target objects in the search region. Com-
paring with feature fusion based method, the TFN can effec-
tively avoid interference from other semantic objects.

Our main contributions can be summarized as follows.

• We define the Global Dilated Attention (GDA) to provide
a global semantics modeling to enhance the semantics of
feature. It greatly enhances the expression of semantic
objects and eliminates the interference of non-semantic
background to improve the robustness of our tracker.

• We define the Target Focusing Network (TFN) to con-
struct point-to-point associations between template and
search region. It effectively distinguishes target and non-
target objects both with rich semantics, and further suc-
cessfully achieves part-level target embedding augmenta-
tion based on the semantics-enhanced feature from GDA.

• A novel tracking method GdaTFT is proposed via the
GDA and TFN. Experiments on challenging benchmarks
(LaSOT, TrackingNet, GOT-10k, OTB-100) demonstrate
that our GdaTFT outperforms most of the state-of-the-art
trackers and achieves leading performance.

2 Related Work
Visual Tracking based on Siamese Network. In recent
years, the siamese network has attracted most of the atten-
tion in visual tracking due to its excellent performance. As
the pioneer, SiamFC (Bertinetto et al. 2016) constructs a
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Figure 2: Model comparison between (a) feature fusion
based method and (b) our TFN. Compared with (a), the TFN
produces more accurate search region with less noises and
distractors (such as the cyan and yellow part in "Search") by
using the feature of template as the query.

simple siamese network based on cross correlation. Firstly,
the patches of template and search region are input into a
siamese backbone network to extract feature, and then the
feature of template is used as convolution kernel to per-
form convolution operation on the feature of search region
to obtain the response map, which is used to predict the
target position. The above is the main framework of the
siamese-based trackers. Many works have been extended to
make great progress based on the siamese tracking frame-
work. Because of the outstanding performance in dealing
with object scale changes, Region Proposal Network (RPN)
(Ren et al. 2015) is widely introduced to improve visual
tracking recently. SiamRPN (Li et al. 2018) combines the
RPN with siamese network, and uses depth-wise cross cor-
relation for feature fusion, which improves the tracking ac-
curacy. Based on SiamRPN, SiamRPN++ (Li et al. 2019)
and SiamDW-RPN (Li et al. 2019) both explore tracking
by deeper network to improve tracking performance. How-
ever, RPN-based trackers often limited by anchor-related
hyper-parameters that require complex manual tuning. Fur-
thermore, many approaches have turned their attention to
anchor-free designs, by treating the task of tracking as an in-
tegrated problem of classification and regression. SiamFC++
(Xu et al. 2020), SiamBAN (Chen et al. 2020) and SiamCAR
(Chen et al. 2020) are all focused here, and the anchor-free
network achieves the state-of-the-art performance at that
time. In this paper, we adopt the anchor-free siamese-based
tracking architecture, and avoid complex tuning of hyper-
parameters.
Attention Mechanism and Visual Tracking. Recently, at-
tention mechanism has been widely used in visual tracking.
Compared with convolution operation, attention mechanism
owns excellent adaptive ability to flexibly focus on the im-
portant things according to the input. CGACD (Du et al.
2020) applies attention on the results of cross correlation
and uses its output to enhance the search region feature.
STMTrack (Fu et al. 2021)uses the attention to select the
template that best matches the current frame from memory.
SiamGAT (Guo et al. 2021) introduces graph attention into
Siamese Networks to improve tracking results. However,
the receptive field of traditional attention is limited, which
limits the semantic extraction of these trackers. Therefore,
the self attention with the ability to model global depen-
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Figure 3: Architecture of our GdaTFT framwork. This framework contains three main components: siamese backbone network
for feature extraction, global target focusing for global semantic enhancement and target focusing, and prediction head for target
localization. The Global Target Focusing is the main work and constructed by our GDA and TFN (in the red rectangle above).

dencies has become very popular in visual tracking. TransT
(Chen et al. 2021) designs a feature fusion network based on
self attention to transfer information between search region
and template, and enhances the tracking accuracy. Inspired
by DETR (Carion et al. 2020), STARK (Yan et al. 2021)
proposes a self-attention-based encoder-decoder network to
achieve feature fusion between template and search region.
With the encoder-decoder framework, TrDimp (Wang et al.
2021) introduces temporal cues and then uses self attention
to achieve spatiotemporal information fusion at the same
time. However, the current methods based on self attention
also have two obvious problems. First, the self attention aims
to build long-range dependencies, ignoring the local struc-
tural information and inter-channel associations, which will
directly affect the extraction of feature semantic informa-
tion. Second, the feature fusion based on self attention often
easily introduces noises that lead to tracking errors. To ad-
dress the above issues, this paper proposes a robust tracking
network based on global dilated attention and target focus-
ing network, and gradually implements the semantic model-
ing of feature and target focusing to achieve robust tracking.

3 Method
This section details the proposed tracker GdaTFT. As Fig. 3,
it includes: siamese backbone for feature extraction, global
target focusing module (composed of the proposed GDA and
TFN) , and prediction head for target localization.

3.1 Overview
Our GdaTFT implements visual tracking by four steps. First,
it extracts the feature of the template and search region sep-
arately using the siamese backbone network. Second, The
GDA performs efficient feature augmentation for both tem-
plate and search region feature to enhance the semantics of

feature in both spatial and channel dimensions. Third, the
TFN uses the template as a query to build a point-to-point
correlation between the template and the search region, and
transfers the information from the template to the search re-
gion to further enhance the feature of target. Finally, we in-
put the output of TFN into the cross correlation based pre-
diction head to produce the target region.
Feature Extraction. Like most siamese-based trackers, the
proposed GdaTFT constructs a feature extraction network
with two parameter-sharing branches, including a template
branch and a search region branch, as in Fig. 3. The tem-
plate branch takes the target patch of the initial frame as in-
put, while the search region branch takes the search region
of current frame as input. After training offline, this feature
extraction network maps the inputs of the two branches to
the same feature space to produce the input of GDA.
Global Target Focusing. This part is designed to achieve
global semantics modeling and target focusing, as the red
rectangle in Fig. 3, it is defined by the proposed GDA and
TFN. In details, we input the feature computed from the
two branches to GDA to enhance the semantics to distin-
guish the objects from background. Subsequently, using the
output of GDA, our TFN enhances the target feature in the
search region to further distinguish target object and non-
target objects both with semantics. The relationship of GDA
and TFN is progressive and complementary. They succes-
sively exclude the interference of background and other se-
mantic objects, and furthermore, provide robust feature for
subsequent prediction head.
Prediction Head. After being enhanced by GDA and TFN,
the feature of non-target objects are greatly weakened, and
the influence of background and distractors in the search re-
gion is reduced, which is of great significance for feature
matching based on cross correlation. With the output feature
from global target focusing, we employ a cross correlation
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Figure 4: Architecture of GDA. It consists of three parts
from left to right: local focusing module (LFM), Dilated At-
tention (DA), and channel adaptation module (CAM). The
three jointly implement our global semantics modeling.

operation commonly used in siamese based trackers to gen-
erate a response map of target and search region. The region
with the largest response in the response map is considered
to be the most likely target. Finally, the response map is in-
put into a simple prediction head composed of a classifica-
tion branch and a regression branch to locate the target, so
as to obtain the accurate target region.

3.2 Global Dilated Attention (GDA)
In the feature extraction phrase as Fig. 3, The proposed
GdaTFT firstly uses the traditional siamese convolution neu-
ral network (CNN) to extract feature, which has a good per-
formance in building local structures. However, due to the
small receptive field, the CNN is difficult to build long-range
dependencies, which limits the semantics of feature and the
robustness of the tracker. To solve this problem, we propose
GDA to optimize the features. It achieves global semantics
enhancement of feature extracted by CNN both in space and
channel dimensions, and improves the robustness of feature.
As Fig. 4, the GDA consists of local focusing module, di-
lated attention and channel adaption module, which are used
to gradually implement the construction of local structure
and long-range dependencies and improve the inter-channel
associations. We use GDA to enhance the semantics by:

Foutput = Finput · C (D (L (Finput))) (1)

where Finput and Foutput are the input and output of GDA,
L is the local focusing module, D is the dilated attention,
and C is the channel adaptation module. The relationships
of L, D and C are complementary, where L and D are used
to implement global modeling in space, and C builds the
correlations of feature between channels.
Local Focusing Module (LFM). We define the local fo-
cusing module by using depth wise convolution (DW-Conv)
to build local structural information and local dependencies
of feature. Compared with the traditional convolution where
each channel corresponds to c convolution kernels, the chan-
nels and convolutions of DW-Conv have a one-to-one corre-
spondence, so the parameter amount is only 1/c of the for-
mer. Assuming that the size of the convolution kernel is k,
for each point on the feature map, LFM builds a connection

between k2 points centered on the point, enhances the lo-
cal focusing ability of the network. It preserves the valuable
local details for the feature semantics extraction.
Dilated Attention (DA). We propose dilated attention to
build long-range dependencies of feature. Compared with
local structural information, which focuses on object details,
long-range dependencies pays more attention to the estab-
lishing of feature semantics. Feature semantics has stronger
anti-interference ability than object details.

We construct the DA by the following three steps as Fig.
4. First, with dilated split, DA samples the feature map at in-
tervals of d and splits it into d2 independent groups. d is the
key parameter of DA which represents the dilation rate of
the module. Second, for group Xi, a multi-head self atten-
tion module (MSAM), which consists of a multi-head self
attention (MSA), feed-forward network (FFN) and add &
norm, is used to construct its global dependencies. It first
performs a linear process on Xi as Equation 2 to get Xq

i ,
Xk

i and Xv
i , and inputs them to the MSA to construct de-

pendencies as Equation 3. Subsequently, the result is input
into the FFN and add & norm to get the output. The red and
blue rectangles in Fig. 4 are two independent MSAMs and
there are d2 independent MSAMs in this part.

Xq
i = Xk

i = Xi + pos(Xi), X
v
i = Xi (2)

MSA(Xi) = softmax

(
Xq

i (X
k
i )

T

√
dx

)
Xv

i (3)

where pos is the spatial position encoder for learning the
position encoding information of Xi and dx is the dimen-
sionality of Xi. The MSAM is calculated by:

MSAM(Xi) = Xi + FFN(MSA(Xi)) (4)

Third, dilated concat is performed to put the sampled
points in each group back to their corresponding positions
in the feature map. The DA constructs sparse long-range de-
pendencies of the feature by dilated sampling.

Compared with dense self attention, sparse feature depen-
dencies focus more on feature semantics and avoid the in-
terference of non-semantic noises from background. As the
last column of Fig. 5, the augmented feature map by DA has
clear boundaries, where the yellow, red and purple regions
are classified as semantics, while the cyan regions are con-
sidered to non-semantics background and been eliminated.
Channel Adaptation Module (CAM). The LFM and DA
together complete the global semantics modeling in the spa-
tial dimension, but ignore the semantic differences between
channels, which makes it difficult to extract the semantics of
feature completely. Therefore, we design a channel adapta-
tion module to construct inter-channel associations. Specifi-
cally, we introduce a 1 × 1 convolution to achieve informa-
tion exchange between channels, and adaptively strengthen
the feature expression of channels with semantics.

Totally, the proposed GDA implements global seman-
tics modeling of feature in both spatial and channel dimen-
sions. Compared with the current popular self attention, it
builds sparse long-range dependencies within feature, and
further constructs local structural information as well as
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Figure 5: The proposed DA. First, assumed d = 3, the 7× 7 feature map is divided into nine independent groups with different
colors. Second, each group is linearly transformed to generate the corresponding q, k, v and sent to the multi-head self attention
module for intra-group feature enhancement. Finally, all points of each group are put back to their original positions via dilated
concatenation. As the last column, the yellow, red and purple regions describing semantic objects are enhanced, while the cyan
part for background without semantics is weakened.

inter-channel associations. In general, GDA effectively ex-
tracts feature semantics, weakens the non-semantic feature
such as background to prevent the interference of complex
backgrounds, and provides a robust feature for subsequent
target focusing.

3.3 Target Focusing Network (TFN)
The proposed GDA has implemented global semantics mod-
eling in the feature of template and the search region, and
separates semantic objects from the non-semantic back-
ground. However, it is still unable to distinguish target object
and non-target objects both with semantics in the feature.
Therefore, in order to achieve accurate target localization,
we need to further weaken the feature expression of non-
target objects with typical semantics to prevent them from
affecting target localization in the feature matching process,
which is also the most critical problem. To achieve this, we
design the TFN with three steps, as Fig. 6.

First, it builds associations between the template and the
search region. Specifically, we take the template feature as
query Q and the feature of search region as key K and value
V . The point-to-point similarity matrix S between the search
region feature Fs ∈ Rns×ds and the template feature Ft ∈
Rnt×dt is defined by following:

S = softmax

(
KQT

√
dk

)
(5)

where dk is the key dimensionality, S ∈ Rns×nt is the simi-
larity matrix between template feature and the search region
feature. In this work, we employ nt = 25, ns = 625 and
dt = ds = dk = 256 as default values.

Second, after obtaining the point-to-point similarity ma-
trix S ∈ Rns×nt , different from the current popular self at-
tention, we perform a column-by-column (along the dimen-
sion representing template) summation within the similarity
matrix, and obtain the similarity between each point in the
search region feature and the whole target feature. Subse-
quently, we transform it to the probability that the point be-
longs to the target through the softmax operation. The pro-
cess above is given by the following equation:

P = softmax(

nt∑
j=1

Si,j) (6)

where P ∈ Rns×1 is the probability that each point in the
feature of search region belongs to the target. Si,j is the sim-
ilarity between the point i in the search region feature and
point j in the template feature.

Third, after obtaining the P , we perform a pointwise prod-
uct (·) between P and the output feature Ninput of search
region computed by GDA, and add the result to Ninput to
get the output Noutput of TFN. The equation for TFN is

Noutput = Ninput +Ninput · P (7)

The proposed TFN is more resistant to interference than
existing feature fusion based approach. Specifically, the
methods based on feature fusion take the search region as the
query to perform linear process on the template feature, and
fuse them to augment the target embedding. However, noise
is easily introduced during the information transfer from the
search region to the template, which affects the discrimina-
tion of the target. In contrast, TFN uses the template as the
query and transfers the target information from the template
to the search region to build a point-to-point similarity be-
tween them, and further achieves part-level target focusing.

We compare the performance between the above two ap-
proaches in achieving target focusing. Experiments demon-
strate that our TFN has stronger robustness compared to the
feature fusion based approach and avoids the influence of
background and interferers in the search region. As shown
in Fig. 7, compared with the feature fusion based approach,
our TFN performs better on highlighting the target from the
search region, and has stronger robustness. Such as the third
column of Fig. 7, the feature fusion based approach is com-
pletely unable to distinguish the tiger toy from background,
while our TFN effectively focuses on the area where the tiger
toy locates in, and eliminates the distraction of leaves.

Experiment
4.1 Implementation Details
Offline Training. The proposed GdaTFT is implemented in
Python on 4 RTX-2080Ti. We use the modified GoogLeNet
(Inveption v3) as the backbone for feature extraction. Its
pretrained parameters is used as initialization to retrain our
model. During the training, the batchsize is set to 96 and
totally 20 epochs are performed by using stochastic gradient
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descent. The initial learning rate is 1e-6, which increases lin-
early to 8e-2 within an epoch, and then decreases to 1e-6 for
the rest 19 epochs. We employ three loss of focal loss (Lin
et al. 2017), binary cross entropy (De Boer et al. 2005) and
IoU loss (Yu et al. 2016) to train the model. We combine the
three losses with linear process by the ratio 1:1:2. The whole
training phase takes around 72 hours. We train GdaTFN with
the data from COCO (Lin et al. 2014), GOT-10k (Huang,
Zhao, and Huang 2019), ImageNet DET/VID (Russakovsky
et al. 2015), TrackingNet (Muller et al. 2018) and LaSOT
(Fan et al. 2019). The patch sizes of search region and tem-
plate are separately set to 289× 289 and 127× 127.

Online Tracking. In online tracking, in order to avoid the
influence of distractors, we use the target region from the
initial frame as the template, and take it as the input of tem-
plate. The reason is the initial frame contains the most reli-
able target without any occlusion and deformation. For the
search branch, we expand the predicted target box from the
previous frame by a factor to obtain an image of the current
search region. In our experiments, we set 4 as the factor.

4.2 Evalution
We compare GdaTFT with state-of-the-art trackers on clas-
sic benchmarks, including: GOT-10K(Huang, Zhao, and
Huang 2019), OTB100(Wu, Lim, and Yang 2013), Track-
ingNet(Muller et al. 2018) and LaSOT(Fan et al. 2019). As
Table 1, our GdaTFT achieves good performance on various
benchmarks. Some visual comparisons are in the appendix.
GOT-10k. GOT-10k(Huang, Zhao, and Huang 2019) is a
challenging large-scale real-world tracking benchmark, with
a total of 563 types of objects, which requires high general-
ization capability of the tracker. The test set includes 180
videos. To evaluate the generalization ability of our tracker
to real-world scenarios, we compare our GdaTFT with cur-
rent state-of-the-art trackers on GOT-10k. The results show
that we perform very well on this benchmark, where SR0.5

is 77.8, surpassing TransT to achieve the current best score,
which proves the generalization ability of our GdaTFT.
OTB100. OTB100(Wu, Lim, and Yang 2013) is the most
classic benchmark in the tracking field. It covers 11 chal-
lenges such as illumination change (IV), deformation (DEF)
and occlusion (OCC), and contains 100 test videos in total.
We compare the 11 challenges of this benchmark with exist-
ing excellent methods, as Fig 8, we are at the highest level
in 6 challenges including IV and DEF, surpassing state-of-
the-art methods such as TransT, the remaining five are also
in the leading position of top-3.
LaSOT. LaSOT(Fan et al. 2019) is a large long-term track-
ing dataset with 1400 videos covering various tracking chal-
lenges, with 280 videos in the test set. Each video has an
average of 2512 frames, and the longest contains 11397
frames, which is a great test of the tracker’s robustness and
long-term tracking capability. The results show that on this
benchmark, our method outperforms most existing trackers
and is on par with state-of-the-art methods such as TransT
(Chen et al. 2021), which demonstrates that our method is
highly competitive in long-term tracking scenarios.
TrackingNet. TrackingNet(Muller et al. 2018) is a large-
scale short-term tracking benchmark that provides 511



LaSOT TrackingNet GOT-10kTracker AUC PNorm P AUC PNorm P AO SR0.75 SR0.5

TransT (Chen et al. 2021) 64.9 73.8 69.0 81.4 86.7 80.3 67.1 60.9 76.8
TrDimp (Wang et al. 2021) 63.9 - 61.4 78.4 83.3 73.1 67.1 58.3 77.7
SiamGAT (Guo et al. 2021) 53.9 53.0 63.3 - - - 62.7 48.8 74.3

CGACD (Du et al. 2020) 51.8 62.6 - 71.1 80.0 69.3 - - -
Ocean-online (Zhang et al. 2020) 56.0 65.1 56.6 - - - 61.1 47.3 72.1
Ocean-offline (Zhang et al. 2020) 52.6 - 52.6 - - - 59.2 - 69.5

SiamFC++ (Xu et al. 2020) 54.3 54.7 62.3 75.4 80.0 70.5 59.5 47.9 69.5
SiamCAR (Guo et al. 2020) 50.7 60.0 51.0 - - - 56.9 41.5 67.0

FCOT (Cui et al. 2020) 57.2 67.8 - 75.4 82.9 72.6 63.4 52.1 76.6
SiamAttn (Yu et al. 2020) 56.0 64.8 - 75.2 81.7 - - - -
DiMP50 (Bhat et al. 2019) 56.9 65.0 56.7 74.0 80.1 68.7 61.1 49.2 71.7

ATOM (Danelljan et al. 2019) 51.5 57.6 50.5 70.3 77.1 64.8 55.6 63.4 40.2
SiamRPN++ (Li et al. 2019) 49.6 56.9 49.1 73.3 80.0 69.4 51.7 32.5 61.6

GdaTFT (Ours) 64.3 68.0 68.7 77.8 83.5 75.4 65.0 53.7 77.8

Table 1: Comparisions on TrackingNet, LaSOT, GOT-10k. The top-3 results are shown in red, blue and green fonts.
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Figure 8: Comparisons on OTB100 with 11 challenges, in-
cluding Illumination Variation (IV), Deformation (DEF),
Out-of-Plane Rotation (OPR), Low Resolution (LR), In-
Plane Rotation (IPR), Occlusion (OCC), Scale Variation
(SC), Motion Blur (MB), Fast Motion (FM), Out of View
(OV), and Background Clutter (BC).

videos without published groundtruth for testing. We upload
the tracking results of our method to the official evaluation
server to obtain its performance on the three indicators of
AUC, Precision (P) and Normalized Precision (PNorm). Re-
sults show that our method outperforms most existing track-
ing methods and is second only to TransT (Chen et al. 2021).

4.3 Ablation Study
Comparison with the current popular self attention. To
investigate the effectiveness of our GDA, we trained two
models using GDA and self attention (SA) respectively with
the same framework and tested them on OTB100. As in Ta-
ble 2, the results show that both self attention and GDA can
improve the tracking performance, but our GDA is 1.2% and
0.7% higher than self attention on Precision and Success,
which proves the effectiveness of our GDA.
Comparison with the feature fusion based approach. To
conduct a comparison between feature fusion (FF) based ap-
proach and our TFN, we trained two models using TFN and
feature fusion based modules respectively and tested them

on OTB100. As in Table 2, The results show that our TFN
is 1.1% and 0.6% higher than feature fusion based approach
on Precision and Success, which proves the effectiveness of
our TFN. Furthermore, The results show that the best per-
formance can be obtained when GDA and TFN are used to-
gether, which also justifies the effectiveness of our GdaTFT.

OTB100SA GDA FF TFN Success Precision
% % % % 67.5 87.4
! % % % 68.3 (↑ 0.8) 88.3 (↑ 0.9)
% ! % % 69.0 (↑ 1.5) 89.5 (↑ 2.1)
% % ! % 68.6 (↑ 1.1) 88.4 (↑ 1.0)
% % % ! 69.2 (↑ 1.7) 89.5 (↑ 2.1)
% ! % ! 70.4 (↑ 2.9) 90.6 (↑ 3.2)

Table 2: Ablation study: experiment resutls on OTB100. The
best performance (last row) is obtained with both the pro-
posed GDA and TFN.

5 Conclusion
In this paper, we propose a novel tracking framework named
GdaTFT for general object tracking by defining the GDA
and TFN. The proposed GDA designs a dilated attention
based on multi-head self attention and dilated split and con-
catenation, and introduces local focusing module and chan-
nel adaption module to enhance the semantics of feature.
the TFN takes the template as the query to build a point-
point similarity between the tempalte and search region, and
finally achieves the part-level enhancement of target embed-
ding. Experiments on various challenging benchmarks in-
cluding GOT-10K, OTB100, LaSOT and TrackingNet show
that our GdaTFT outperforms many start-of-the-art trackers
and achieves leading performance.
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