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a b s t r a c t

We present a novel image retargeting approach for high-definition displaying based on
multiple-cue salient region extraction and optimized image composition, which allows
resizing an image into user-specified aspect ratios while preserving prominent visual
salient image information. Firstly, we sum up six properties for measuring the salient
objects and apply them to region extraction. Then, according to our optimized rules of
image composition, we evaluate the aesthetic scores with different extracted sub-images.
Finally,we sort out the target imagewith the highest aesthetic score and retarget it to fit the
final scale of displaying. The experimental results show the performance and effectiveness
of our approach.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

With the popularity of high-definition display devices, such as large screen televisions, widescreen LCD monitors, MP4s
and so on, the scales of media display devices are becoming more and more diversified and personalized. High-definition
images or videos are usually displayed on screens of different sizes. Therefore, how to retarget images to fit such a variety
of display screens while preserving and highlighting the prominent objects and their relative positions in the original image
becomes a significant problem. The retargeting problem can be stated as follows [1]. Given an original image I with the
size Iw × Ih, we want to retarget it to a new size I ′w × I ′h such that the original image can be well represented. The goal of
retargeting is to preservemaximally aesthetic effectswhileminimizing the distortions of the prominent objects and regions.
Thus, the problem of image retargeting can be defined as

f : I → I ′, f (Iw, Ih) = (I ′w, I ′h), (1)

where f is amapping from the original image to the retargeted image, and it must satisfy the following constraint condition:

min
n−

i=1

D(Si), i ∈ N+, (2)
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where D(Si) denotes the distortion of salient objects of Si and N+ denotes the positive integers. The following are the main
principles currently used for retargeting [1]:

(1) The important information of the original image should be preserved.
(2) The basic structure of the original image should be preserved.
(3) Visual artifacts should be as few as possible.

Recently, a large number of non-homogeneous image retargeting approaches have appeared and the main technologies
can be classified as mesh-based [1–3], seam-based [4,5], cropping-based [6–8], and patch-based approaches [9,10] (and so
on). Meanwhile, the image-based video retargeting problem [11–13] is also attracting more and more attention.

In fact, either for static image or for dynamic video retargeting, the necessary operator has to distinguish the salient
objects from the original image. This operator can be considered as a quantitative process, from subjective perception to
objectivemeasurement. And the result of retargeting depends heavily on the value of the saliencymeasurement. In ourwork,
we present a novel saliency measurement approach based on multiple cues and use it for salient image region extraction.
In addition, we present a numerical computation approach with the rules of optimized image composition based on the
aesthetic principle.

On the basis of our above approaches, we convert the retargeting problem into that of extracting the salient objects of
the original image while keeping the important image information as far as possible. This can be defined as follows:

Isub =

m−
k=1

−
(i,j)∈Ak

f (i, j), (3)

where Ak, 1 ≤ k ≤ m, are the areas of the kth salient regions. In the next section, we use these areas to compute the
best threshold for region extraction. In this way, we establish a novel aesthetic measurement for objectively measuring the
aesthetic quality of the extracted sub-image compositions. To summarize, our main contributions are that we:

(1) Present some properties for measuring the salient objects for region extraction.
(2) Present and implement the rules for how to select the salient objects such that the distribution of extracted regions

follows the distributions of dominant points and dominant lines.
(3) Combinemultiple-cue salient region extractionwith the rules for optimized image composition in order to automatically

retarget a high-definition image.

The rest of the paper is organized as follows. In Section 2, we describe some properties as cues for measuring the saliency
and use them for region extraction. In Section 3, we introduce the rules of image composition for calculating the aesthetic
scores of extracted samples. In Section 4, we describe the implementation details of two extracting schemes for the sub-
image and give our experimental results. Our conclusion and perspectives are given in Section 5.

2. Multiple-cue saliency measurement and region extraction

The retargeting operation depends on the importance of the image content for determining the information to preserve
or not preserve. Actually, the importance of the image content can be considered as the degree of human visual attention.
However, the visual attention belongs to a subjective factor, which cannot be computed in the computer. The saliency
measurement operator uses some heuristic schemes to quantify the subjective factor to an objective numerical value.
Therefore, it can divide the image content into different numerical levels according to the degree of importance in human
vision. The process of measurement does not depend on user interaction; therefore, it make sense to use homogeneous
image retargeting that requires more automatic computation. Combining multiple image features as cues, we present a
novel saliency measurement approach and use it to extract salient image regions. Our saliency measurement includes two
parts: one is region measurement and the other is line measurement. The former reflects the distribution of the salient
objects and the latter describes the importance of the straight lines. Section 2.3 details how the saliency measurement
works in the region extraction.

2.1. Salient region measurement

Salient region measurement has been extensively studied in the past few years, and used in face detection [14,15] and
object recognition. These approaches to salient region measurement are usually based on low-level intensity and contrast
information, the combination of high-level image content and scene understanding, and establishing computable models
by means of heuristic rules and strategies [3]. Ma et al. [16] presented a contrast-based visual attentionmodel using a series
of heuristic rules for human vision. Itti et al. [17] presented a model by using a multi-scale filter to obtain image color,
intensity and orientation information, and then detected the regions that have differences from their surroundings. Harel
et al. [18] presented a novel visual saliency model based on graph theory. In our approach, we adopt an open source saliency
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Fig. 1. An example of hybrid saliency detection and segmentation. (a) Input image. (b) GBVS saliency map. (c) Gradient magnitude. (d) Multiple-cue
saliency measurement. (e) Region extraction via saliency measurement.

measurement toolbox called Graph-based Visual Saliency (GBVS1) [18] to obtain the saliency map from the original image.
The algorithm first computes the featuremapsM , e.g., bymeans of linear filtering followedby someelementary nonlinearity,
and then followed by activation, normalization and their combination. In GBVS, the dissimilarity between two nodes is
defined as follows [18]:

dissim((j, k)||(p, q)) :=

log M(j, k)
M(p, q)

 . (4)

Now we consider the fully connected directed graph G obtained by connecting adjacent nodes (pixels) of M which
are labeled with indices (j, k) and (p, q). The directed edge from node (j, k) to node (p, q) will be assigned a weight as
follows [18]:

wA((j, k), (p, q)) = dissim((j, k)||(p, q)) · exp


−

(j−p)2+(k−q)2

2σ2


, (5)

where σ is a free parameter. Therefore, the weight of the edge from node (j, k) to node (p, q) is proportional to their
dissimilarity and inversely proportional to the exponential of the square of their closeness in M . Then a Markov chain can
be defined on G by normalizing the weights of the outbound edges of each node to 1, and drawing the equivalence between
nodes and states, and edgeweights and transition probabilities. The result is an activationmeasure derived from the pairwise
contrast.

The goal of ‘‘normalizing’’ is stated as: concentratingmass on activationmaps. Bymass concentration, another algorithm
based on the Markov chain is defined. Beginning with the activation measure B, the new dissimilarity weight of the feature
map is re-defined as [18]

wN((j, k), (p, q)) = B(p, q) · exp


−

(j−p)2+(k−q)2

2σ2


. (6)

Again, normalizing the weights of the outbound edges of each node to 1 and treating the result graph as a Markov chain
in order to compute the equilibrium distribution over the nodes, the final result is the saliencymeasurement for the original
image. An example is shown in Fig. 1(b).

In application, it is usually impossible to completely detect the boundaries of salient objects. Therefore, on the basis of a
finite difference operator, we introduce the gradient magnitude in order to increase the accuracy of the boundary detection.
We formulate this process as follows:

F(S) = αIS(wA, wN) + (1 − α)IG(S), (7)

where IS(wA, wN) denotes the saliency map of the input image with the above weights wA and wN , IG = mag(∇I) =

((∂ I/∂x )2 + (∂ I/∂y)2)1/2 denotes the gradient magnitude matrix, and IG(S) = IG|S is the restriction of IG to S. In addition,
α is a weight for controlling the saliency value and the gradient magnitude. In the experiments, firstly, one must ensure
the saliency value and the gradient magnitude to be of the same order of magnitude. And we normalize the α values to
obtain weighting factors within 0 to 1. The simplest method is to set α = 0.5, for this can balance the saliency map and the
gradient magnitude. But in our experiment, we find that a suitable setting is α = 0.8, and this can eliminate most of the
disturbance caused by the gradient variation. Fig. 1(d) shows the hybrid saliency map which consists of the GBVS saliency
map (see Fig. 1(b)) and the gradient magnitude (see Fig. 1(c)).

The recognizing of salient objects is critical to image retargeting. To quantify the salient object measurement, we require
the saliency measurement to have the following properties.

2.1.1. Gradient disturbance
The gradientmagnitude reflects the greatest changing rate in the imagedomain, but over-changingwill lead to inaccuracy

in the recognizing of important objects. So, we expect the gradient disturbance to be as little as possible (see Fig. 1(c) and
(d)). The gradient disturbance can bemeasured from the scale of sets of pixel gradientswith a threshold in the specific image

1 GBVS website: http://www.klab.caltech.edu/~harel/share/gbvs.php.

http://www.klab.caltech.edu/~harel/share/gbvs.php
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domain, and the scale is defined by

G =

n
i=1

pi, pi ∈ (∇I|T ) ⊂ W , (8)

where pi is the ith pixel with a gradient that is distinguished by a specific threshold, T is the threshold and W denotes a
designated image domain.

2.1.2. Multiple-object detection
Multiple-object detection is helpful for recognizing multiple important objects and determining the quantity of objects

(see Fig. 1(b) and (d)). We regard the multiple objects as a set and define as follows:
n

i=1

Oi = O, (9)

where O is an object set, Oi, i = 1, 2, . . . , n, denotes the ith detective object. And Oi


Oj = ∅ for all i and j, i ≠ j.

2.1.3. Edge sensitivity
The capacity for edge detection reflects the accuracy of boundary detection. The edge can be described by a Laplacian of a

Gaussian (LoG) filter simply, and the result reflects the sensitivity to edges in the saliencymeasurement.∇2 is the Laplacian
operator (∂2/∂x2 + ∂2/∂y2), and G is the 2D Gaussian function G(x, y) = e−(x2+y2)/(2σ 2). We use the following:

∇
2G(x, y) =

∂2G(x, y)
∂x2

+
∂2G(x, y)

∂y2

=
∂

∂x

[
−x
σ 2

e−(x2+y2)/(2σ 2)

]
+

∂

∂y

[
−y
σ 2

e−(x2+y2)/(2σ 2)

]
=

[
x2

σ 4
−

1
σ 2

]
e−(x2+y2)/(2σ 2)

+

[
y2

σ 4
−

1
σ 2

]
e−(x2+y2)/(2σ 2)

=

[
x2 + y2 − 2σ 2

σ 4

]
e−(x2+y2)/(2σ 2). (10)

2.1.4. Shape completeness
Shape completeness is a basic requirement for preserving the shapes of important objects. A completenessmeasurement

function is defined on the basis of the similarity in color between the original shape and the target shape in a selected region.
The function is the following:

SCsim =
1
N

−
P⊂O

min
Q⊂T

C(P,Q ), (11)

where P andQ are extracted patches of specific size in the original shape and target shape, respectively. C(·) is the similarity
in color of P and Q . N is the overlap patch on the pixel. In fact, SCsim = 0 means that the original shape and target shape are
the same, exactly.

2.1.5. Sharp feature preservation
Sharp feature preservation reflects the recognition ability for preserving details of important objects, especially the sharp

edges and corners (see Fig. 1(d)). Because the sharp features are usually reflected by edges, the quantity processing for sharp
feature preservation is similar to that for edge sensitivity, but the former emphasizes the ability to preserve detail and the
latter emphasizes the sensitivity of edge detection and location.

2.1.6. Location accuracy
Location accuracy reflects the precise positions of the important objects. The relative error ε reflects the difference

between the original object and target object and it can be defined as follows:

ε = ‖Ox,y − Tx,y‖/‖Ox,y‖, (12)

where Ox,y and Tx,y denote the centroids of the original object and the target object, respectively.
Table 1 compares the results obtained by using threshold segmentation, visual saliency, the gradient magnitude and our

approach based on the above six properties, where Y means the approach having the corresponding property, and N means
it not having that property.
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Table 1
Saliency measurement properties.

Threshold segmentation Visual saliency Gradient magnitude Ours

Gradient disturbance N N Y Y
Multi-object detection N Y N Y
Edge sensitivity N N Y Y
Shape completeness N N Y Y
Sharp preservation N N Y Y
Location accuracy N Y N Y

2.2. Salient line measurement

Straight line measurement is another commonly used approach. The line detection process can be achieved through the
edge detecting operator and the Hough transformation. In the process of the salient region detection, we have already run
the finite difference operator and obtained the partial derivatives in the X and Y directions. The partial derivative can be
expressed as the edge in a binary image style. Assume that the lines are given by [19]

f (λ, ϕ) := ϕ1 cos θ + ϕ2 sin θ − ρ = 0, (13)
where the parameter is set as follows:

λ = (ρ, θ) ∈ Λ ⊂ R+ × [0, 2π ], (14)

ϕ = (ϕ1, ϕ2) ∈ Ω ⊂ R2, (15)
and Ω = [0, a] × [0, b] is a rectangle and is usually taken as [0, 1]2.

The Hough transform is defined by the integral

H(λ) =

∫
Ω

χ(ϕ)δ(f (λ, ϕ))dϕ, (16)

where δ is the Dirac delta function and χ is the characteristic function of Ω . The integral will respond only when the pixel
ϕ belongs to the line defined by λ, i.e., f (λ, ϕ) = 0. The peak of H(λ) at λ0 corresponds to a good match with the line
of parameter λ0. Then the line detection problem is converted into a peak detection problem. Numerically, the integral
equation (16) can be approximated as follows:

∀λ ∈ Λd,H(λ) =

−
ϕ∈Ψ

χ(ϕ)Φf (λ, ϕ), (17)

where Λd is a discrete element of Λ and Ψ is a discrete element of Ω , and Φ(·) is a discrete approximation of δ(·). More
specifically, Λd and Ψ can be respectively defined as follows (Ω = [0, 1]2):

Λd = {u1ρ, u ∈ [0, Z − 1]} × {v1θ, v ∈ [0, Z − 1]}, (18)
Ψ = {u1ϕ1, u ∈ [0, Z − 1]} × {v1ϕ2, u ∈ [0, Z − 1]}, (19)

where Z is the positive integer selected by users and 1ρ = 1/(
√
2Z), 1ϕ1 = 1ϕ2 = 1/Z .

To describe the importance of each line obtained above, for each line Li obtained above we introduce the following
number:

G(Li) = (γ ‖Li‖ + ϕHi)/(γ + ϕ), (20)
where ‖Li‖ is the length of Li restricted to Ω, γ and ϕ are two heuristically weighted coefficients, and

Hi =

−
p∈Li

(|∂ I(p)/∂x| + |∂ I(p)/∂y|), (21)

where
∑

p∈Li
in Eq. (21) means the sum over all the integer points of Li. The bigger the value of G(Li), the more important

the line Li, and the darker the color. Fig. 3(b) shows two salient lines in gray and in black.

2.3. Region extraction based on multiple-cue saliency measurement

In this section, we extract the salient regions from the original image by region extraction. This depends on the selection
of some thresholds and wewill dynamically compute these thresholds on the basis of the ratios between the salient regions
and the entire image region. For a given threshold T , we assume that Si(T ), 1 ≤ i ≤ n, are the salient regions obtained by
region extraction. Then, the ratio is defined as follows:

ℜ(T ) =


n−

i=1

A(Si(T ))


A(I), (22)

where A(Si(T )) denotes the areas of Si(T ) and A(I) denotes the area of the original image.
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Fig. 2. The cubic Catmull–Rom spline curve algorithm. The first two levels from the bottomwere obtained using Neville’s algorithm and the topmost level
was obtained using the de Boor algorithm.
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Fig. 3. Aesthetic rules of image composition. (a) The rule of dominant points. (b) The rule of dominant lines.

Next, we find a suitable ratio ℜb on the basis of Eq. (22). To this end, we first obtain some samples (ℜi, Ti), 0 ≤ i ≤ N .
We use a Catmull–Rom spline [20–22] to interpolate these samples to obtain a continuous curve. The Catmull–Rom spline
Cn(t) is defined by [23]

Cn(t) =

−
k

Nk,n−1(t)Pk···k+n(t), (23)

where Nk,n−1(t) is a B-spline curve obtained by the de Boor algorithm, and we describe it as follows:

Nk,n−1(t) =
t − tk

tk+n−1 − tk
Nk,n−2(t) +

tk+n − t
tk+n − tk+1

Nk+1,n−2(t). (24)

Also Pk···k+n(t) can be obtained by Neville’s algorithm for a Lagrange polynomial:

Pk···k+n(t) =
tk+n − t
tk+n − tk

Pk···k+n−1(t) +
t − tk

tk+n − tk
Pk+1···k+n(t). (25)

A cubic Catmull–Rom spline can be calculated by using the pyramid algorithm (see Fig. 2).
After the interpolation, we calculate the most suitable ratio ℑ by using the following formula:

ℑ = max
T∈Tin

p(T ), (26)

where Tin is the set of inflection points of p. In this way, we find the optimal threshold at the same time. It is obvious that
we can obtain these inflection points by computing the second derivative for the cubic Catmull–Rom spline curve.

3. Optimal image composition rules

Image composition rules usually reflect the positions of objects in an image such that the distribution of these objects
follows aesthetic theory. Image composition rules are commonly used in photography and painting. Such rules are usually
taught in professional books or courses of photography and guide people as regards how to take excellent photographs.
Here below we introduce these rules for image composition and take advantage of them in computing the aesthetic score
for image retargeting.
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3.1. Aesthetic rules of image composition

Recently, Liu et al. [6] presented an excellent approach for setting these rules. In their approach, they developed a
computable model for evaluating the composition aesthetics of a given image based on quantizing several well-grounded
composition rules, including rules of thirds, diagonal dominance and visual balance. Their approach summedup the aesthetic
rules from a photographic point of view; however, their approach is more empirical and lacks a uniform relationship among
these rules. Therefore, some conflicts may exist. In fact, image composition is basically based on the composition of feature
points and lines. In contrast, we present some novel composition rules based on image features. Although based on the
empirical rules, they abstract the geometric elements from these empirical rules, and formulate the rule of dominant points
and lines. The two rules can form a uniform relationship on the basis of the geometric composition. Therefore, they can be
used to evaluate the aesthetic scores for the extracted sub-images.

3.1.1. The rule of dominant points
The well-known rule of thirds is that where one divides the image into nine equal parts by means of two equally spaced

horizontal lines and two vertical lines; see the gray dotted line in Fig. 3(a). Then, the intersections of these four lines and
the center of the original image form a five-point structure, called the dominant points. In the rule of dominant points, we
calculate the minimum distance between the centroid of each salient region and these dominant points. This distance is
called the dominant point distance of this saliency and denoted by d(S). See Fig. 3(a); the dominant points are marked in
red and the centroids of the salient regions (gray region) are marked in blue. At the same time, the whole image is divided
into four quadrants by a horizontal solid line and a vertical solid line. A better dominant point image composition means a
smaller sumof all the distances of salient regions. In Section 3.2,wewill extract a sub-imagewith the best image composition
among a set of sub-images.

3.1.2. The rule of dominant lines
Lines are another important feature of an image, especially straight lines. Actually, the straight lines laid on the image

can be divided into three types: horizontal, vertical and diagonal, denoted by LH, LV and LD, respectively. See Fig. 3(b); these
three types of line are marked as light green, light blue and light red dotted lines respectively. In our rule of dominant lines,
we establish the dominant lines from the thirds lines, the median lines and two diagonal lines of an image. According to
the rule of dominant lines, we will calculate the minimum distance between the median point of each salient line L and the
dominant lines. This distance is called the dominant line distance of the salient line and denoted by d(L). A better dominant
line image composition means a smaller sum of all the distances of salient lines.

3.2. Measurement computation

In order to measure the aesthetics of an image, we use an aesthetic score to identify the aesthetics of the image. In terms
of the above mentioned rule of dominant points and rule of dominant lines, the aesthetic scores are determined by the
distances of dominant points and dominant lines, respectively. L = {LH, LV , LD} denoting the corresponding line is one of
three dominant line types (see Fig. 3(b)).

3.2.1. The dominant point score
The aesthetic score Vp of the dominant points is given by the following equation:

Vp =


n−

i=1

1
1 + d(Si)

F(Si)


n−

i=1

F(Si)


, (27)

where Si, 1 ≤ i ≤ n, are all the saliencies and F(Si) is defined by Eq. (7). As shown in Fig. 3(a), after dividing an image into
four quadrants, to obtain the dominant point distance of a saliency S, one only needs to calculate the Euclidean distances
d(PS, PC ) and d(PS, PI), where PS is the centroid of S, PI is the centroid of the original image I , and PC is the dominant point
located in the same quadrant as PS . In this way, we can reduce the calculation.

3.2.2. The dominant line score
The aesthetic score Vl of dominant lines is given by

Vl =


m−
i=1

1
1 + d(Li)

G(Li)


m−
i=1

G(Li)


, (28)

where Li, 1 ≤ i ≤ m, are all the saliencies and G(Li) is defined by Eq. (20).
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Table 2
Time costs of different approaches with the test images in Fig. 4.

Scaling (s) Optimized scale-and-stretch (s) Forward seam carving (s) Ours (s)

Roadster 0.078 2.759 4.135 1.803
Elephant 0.077 2.859 4.087 1.588
Skiing 0.077 2.795 4.328 1.711
Rider 0.078 2.783 4.572 1.297

3.2.3. The total aesthetic score
The total aesthetic score is defined by a combination of the above aesthetic scores as follows:

V =
ωpVp + ωlVl

ωp + ωl
, (ωp, ωl ∈ [0, 1]), (29)

where ωp and ωl are the empirical weights, and their values are chosen within 0 to 1. ωp and ωl can be set as a constant
(e.g. 0.5) or depend on the value of Vp and Vl. Generally, we assure that the sub-images have one salient object at least by
means of the region extraction operator. That is, the ωp value must be larger than 0. However, ωl = 0 if there is no straight
salient line in the image; otherwise ωl ≠ 0. According to Eq. (29), we can choose the best sub-image corresponding to the
maximal total aesthetic score.

4. Implementation and experimental results

We implement our approach on a computer with a 2.8 GHz PentiumDuo CPU, 4 GB RAM andMATLAB 2009a. The steps of
our approach are as follows. Firstly,we input an arbitrary aspect ratio of an extractingwindow. Then,we get some samples by
using multiple windows. Later, we evaluate the aesthetic scores of dominant points and dominant lines. Finally, we choose
the sub-image which has the highest aesthetic score.

4.1. Sub-image extraction

The quality of cropping is decided by the position and the size of the extracted regions. We use two cropping approaches
to produce suitable sub-image samples. One is the 8-DoF approach and the other the R-DoF approach. In the 8-DoF approach,
the extracting window is separately translated, starting from an initial sub-image with the same center as the input image
and at the same step, to the boundary of the image in eight directions. Iw and Ih denote the width and height of the input
image, and Rw, Rh and (x0, y0) denote the width, height and left upper corner of the initial window, respectively. Generally
speaking, the initial window should satisfy Rw(0) > Iw

2 and Rh(0) >
Ih
2 . Rw/Rh is the aspect ratio. R-DoFmeans randomDoF,

i.e., the left upper corner of the cropping window is determined by a random function.
There are remarkable differences among the extracted sub-images. The salient object is extracted in different ways,

producing different image compositions and aesthetics.

4.2. Experiments

Recently, Liu et al. [24] presented an assessment based on a top-down approach that extracted the global geometric
structures of input and output images, and established the pixel correspondence. Rubinstein et al. [25] gathered a set
of images as benchmarks and conducted a user study to compare some state-of-the-art retargeting approaches. In our
experiments, we use some commonly used approaches and results gathered from RetargetMe [25], such as the scaling
approach, forward seam carving approach (seam based) and optimized scale-and-stretch approach (mesh based).

The comparisons are given in Table 2, Figs. 4 and 5. Obviously, we can see that Fig. 4(a) and (b) have some serious
distortion of the salient objectswhile Fig. 4(c) has some discontinuities in the image. Our results are given in Fig. 4(d). Table 2
shows the time costs of different approaches. Apparently, the simple scaling costs the least time, but both the optimized
scale-and-stretch and the forward seam carving approaches take much more time than our approach. In Fig. 5, we compare
our results with those gathered from RetargetMe2 benchmarks.

5. Conclusions

Wepresent an approach ofmultiple-cue region extraction and optimized image composition to produce a high-definition
retargeting image. On the one hand, our approach can reduce the computing time significantly by using an extracting-based
image retargeting approach. On the other hand, on the basis of our image composition rules (the rules of dominant points and
dominant lines), our approach can also significantly improve the aesthetic effect of the image. We sum up six properties for
evaluating the visual salient objects and present the region extraction. Because both points and lines are essential elements

2 RetargetMe website: http://people.csail.mit.edu/mrub/retargetme/.

http://people.csail.mit.edu/mrub/retargetme/
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a b c d

Fig. 4. Comparison of different retargeting approaches. (a) Scaling. (b) Optimized scale-and-stretch [12]. (c) Forward seam carving [1]. (d) Ours.

a b c d e f g

Fig. 5. Comparison of different retargeting approaches using RetargetMe. (a) Input image. (b) Cropping. (c) Scaling. (d) Warping [11]. (e) Optimized scale-
and-stretch [12]. (f) Seam carving [1]. (g) Ours.

of an image, their distributions basically reflect the aesthetics of the image. Our image composition rules provide some
useful guidelines for retargeting; however, some limitations are also obvious. For example, some critical image information
could be lost. In addition, the semantics of the original image could be changed or the global semantics destroyed.

In the future, wewill devote attention to improving the efficiency of the algorithm so that it can be used on a video stream
in real time and present more image composition rules based on a deeper study of the geometric and color characteristics
of an image.
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