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Abstract: In this study, the authors propose a novel network architecture to address the problem of removing rain streaks from
single images. To strengthen the representational power of the network, they adopt the squeeze-and-excitation block in the
network. Furthermore, they propose a new network connection called reusing original input (ROI). The ROI connection reuses
the original input of the network and can provide more texture details of the background. These details can be useful for the
restoration of the image after removing the rain streaks. Batch normalisation is applied to further improve the rain removal
performance of the network. Despite the fact that the network is trained on synthetic data, experimental results show that the
proposed network has a comparable performance on both synthetic images and real-world images to the state-of-the-art
methods.

1 Introduction
Rain removal can be considered an important task in image
denoising, image decomposition, and image restoration. It removes
rain from images or videos to improve visual quality. With an input
that covers rain, many computer vision algorithms, such as object
tracking [1], might miss out on some significant features of the
input, which will lead to the failure of the algorithms. For the
outdoor vision system, the captured photographs or videos could
suffer from several types of visibility degradation under rainy
conditions. Raindrops blur and/or deform images like a magnifier.
Distant rain streaks accumulate and result in foggy effects. Nearby
rain streaks introduce image noise such as bright white streaks that
blocks part of the scenes [2].

Lots of methods have been proposed for rain removal. These
methods can be divided into two categories: video-based and
single-image-based rain removal methods. Generally, removing
rain from a single image is more challenging due to the lack of
temporal information. However, it is important since in some cases,
such as images downloaded from the internet, only one single rainy
image is available. On the other hand, the video rain removal
problem can be solved by applying the single-image-based method
frame by frame.

Recently, deep learning methods have been widely used in
various computer vision tasks such as image recognition [3–7],
image de-noising [8–11], image classification [12], image de-
hazing [13–16], and image super-resolution [17–19]. The
effectiveness of the deep learning method has been well proved. As
stated in [4], deeper networks would encounter the degradation
problem without a proper network architecture. When used in
image de-noising and de-hazing, deep learning methods might over
smooth the images if the images contain textures similar to the
noise or haze, i.e. they would remove some details of the images
accidentally and thus blur the images.

In this work, a novel network architecture designed to tackle the
single image rain removal task is proposed. The contributions of
this work are three-fold.

(i) We propose a new network connection that can easily reuse the
original input of the network. This connection is called reusing
original input (ROI), and it is inspired by the residual learning
network (ResNet) [4] and the densely connected convolutional
network (DenseNet) [20]. ROI connection creates bypasses

between the original input and the subsequent layers. These
bypasses can be crucial for avoiding the degradation problem when
the network goes deeper as stated in [4]. Furthermore, the ROI
connection can provide more texture details for the network. These
details are important for the restoration after rain streaks removal
and can help to decrease the over-smoothness.
(ii) Based on the ROI connection, we adopt squeeze-and-excitation
(SE) block and batch normalisation (BN) to construct the proposed
ROISE network (ROISEN). With the SE block, our ROISEN can
utilise the relationships between channels, which could strengthen
the representational power of the network. Experimental results
confirm the effectiveness of ROISEN.
(iii) We train the proposed ROISEN with two different kinds of
inputs. The first one is training with the rainy images directly, and
the other one is training with the detail layers of the rainy images,
as used by other works [21–23]. We make a comparison between
these two training methods. To our knowledge, this is the first deep
learning-based rain removal work to conduct an explicit
comparison between these two kinds of inputs.

The remainder of this paper is as follows: in Section 2, the
related rain removal works are reviewed. We break them into two
parts: video-based and single-image-based methods. In Section 3,
we discuss the details of the proposed ROISEN, including the
network architecture and implementation details. In Section 4, we
show our experimental results and analyse them. Finally, the paper
is summarised in Section 5.

2 Related work
As mentioned above, rain removal methods can be divided into two
categories: video-based and single-image-based methods.

2.1 Video-based rain removal methods

Video-based rain removal methods take advantage of the temporal
contents of the video. In 2004, Garg and Nayar developed a model
for the visual appearance of rain [24]. Unfortunately, when the
changes in intensities caused by the rain streaks are small,
detecting and removing rain streaks using this method can be
difficult. Bossu et al. proposed a method that first detected moving
objects by background subtraction. Then, they used selection rules
based on photometric and size to segment the potential rain pixels.
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Next, a histogram of the orientation of streaks is built and then
used to detect the rain pixels [25]. The frame rate of this method
barely meets the real-time processing requirement. A similar
problem exists in [26, 27]. In [26], Santhaseelan and Asari detected
rain streaks based on phase congruency features and then restored
the image utilising the intensities of the rainy pixels, spatial
neighbours, and temporal neighbours. In [27], You et al. modelled
the adherent raindrops and used the model for detection under the
assumption that the raindrops are static during the detection
process. Then, they removed the detected raindrops and restored
the image differently for partially occluding areas and completely
occluding areas. According to the study, only intensity-change
based features can work in real time while the best performance of
this method requires both intensity-change and motion-based
features. In [28], Ren et al. divided rain streaks into sparse ones
and dense ones and modelled them in a matrix decomposition
framework. Then, they formulated the detection of sparse rain
streaks and moving objects as a multi-label Markov random field
while assuming that the dense rain streaks obey a Gaussian
distribution. Finally, all rain streaks were removed using a low-
rank representation of the backgrounds and rain pixels within the
moving objects were filtered by a group sparsity term. This method
may fail to separate dynamic textures and moving objects. A
Computer Vision and Pattern Recognition (CVPR) work [29]
proposed a hybrid rain model for both rain streaks and rain
occlusion regions, and then they built a joint recurrent rain removal
and reconstruction network to address the problem of video rain
removal.

2.2 Single-image-based rain removal methods

Owing to the lack of temporal information, video-based methods
cannot be extended to single image rain removal directly. Also, it
leads to the appearance of the single-image-based rain removal
methods.

In 2014, Kim et al. proposed a method that first detected the
rain streaks based on the assumption that the rain streaks have
elongated elliptical shapes, then removed them using non-local
mean filters [30]. This method works well in some situations.
However, when the image contains rain streaks of different
orientations or scales, the detection of rain streak could be
challenging. Luo et al. used discriminative sparse coding to remove
rain streaks in a single image [31]. This method performs better
than Kim's work qualitatively but still not effective enough. In [2],
Li et al. proposed a method that used patch-based priors, which are
based on Gaussian mixture models (GMMs) for both the clean
layers and rain layers. Both Luo's and Li's works tend to leave the
marks of rain streaks after rain removal. Also, since the method
proposed by Li has to learn the GMM first for the input rainy
image, the running time could be longer depending on the size of
the input image. Considering the intrinsic directional and structural
information of rain streaks, Deng et al. proposed a global sparse
model in [32] and solved it with an alternating direction method of
multipliers.

In the past few years, some deep learning-based methods for
single image rain removal are proposed. In 2017, Fu et al.
proposed a network called DerainNet [21]. They first decomposed
images into base layers and detail layers, then trained the
DerainNet with detail layers. After rain removal, they utilised the
image enhancement technique on both base layers and detail layers
to further improve the rain removal results. This method works
well when the rainy image has a foggy look. In the same year, Fu et
al. proposed another network called DetailNet in [22]. Similarly,
they used the same image decomposition technique used in [21] to
prepare the training data. Also, this time, they proposed a negative
residual mapping to ease the training process. The DetailNet

performs well but it contains more layers than DerainNet, thus the
training would be time-consuming. Xia et al. proposed a simplified
residual dense network in [23] to address the problem. Also, they
modified the image decomposition technique used in [21, 22]
slightly, to help the network learn more accurately. Zhang and Patel
proposed a density-aware multi-stream dense network, which they
called DID-MDN in [33]. This network first learned the density
information of rain, then removed rain streaks with the aid of this
information. A multi-stream dense network was used to deal with
rain streaks with different scales and shapes. According to the
published codes, this method can only produce an output with a
size of 512 × 512. In [34], the authors used a coarse network to
generate a raw rain removal result and then used a refinement
network to generate a better result. This method tends to blur the
edges of some objects. All these methods have their own
limitation, and there is still room for improvement.

3 Proposed method
In this section, we will take a closer look at the network
architecture of the proposed ROISEN. First, we will briefly review
the SE block, then we will introduce the ROI connection. After
that, we will break down the structure of ROISEN for illustration.
The implementation details will be discussed as well.

3.1 SE block

SE block is proposed in [35] by Hu et al. According to the paper,
the SE block aims at taking good advantage of the channel-wise
information by explicitly modelling the interdependencies between
the channels of feature maps. Fig. 1 is an illustration of the SE
block. A SE block contains two major steps, squeeze and
excitation, and they are denoted as Fsq( ⋅ ) and Fex( ⋅ , W),
respectively, in Fig. 1. As can be seen in Fig. 1, there is an
operation denoted as Ftr. It represents any given transformation
such as a convolution or a set of convolution. The output of this
transformation is the input of the SE block. After the excitation, the
SE block re-scales its input with the excitation output to form its
final output. The re-scaling operation is denoted as Fscale( ⋅ , ⋅ ). For
any given transformation output U, U ∈ ℝH × W × C, a SE block can
be described as follows:

zc = Fsq(uc) = 1
H × W ∑

i = 1

H

∑
j = 1

W
uc(i, j) (1)

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (2)

x~c = Fscale(uc, sc) = sc ⋅ uc (3)

In (1), zc is the descriptor of uc, i.e. the cth channel of U. The SE
block uses global average pooling to shrink U through spatial
dimensions H × W , i.e. it uses the average value of each channel to
represent the channel itself, and the average value is called the
channel descriptor. In (2), σ and δ represent the sigmoid activation
and rectified linear unit (ReLU) function, respectively,
W1 ∈ ℝ

C
r × C, and W2 ∈ ℝC × C /r. r is called the reduction ratio,

which aims at limiting model complexity. Equation (3) describes
the re-scaling operation of the SE block, where Fscale(uc, sc) refers
to channel-wise multiplication. The final output of an SE block can
be written as X

~ = [x~1, x~2, …, x~C]. The SE block can be considered
as feature recalibration.

3.2 ROI connection

Deeper networks would encounter the degradation problem without
proper designs. According to [4], creating bypasses between layers
can ease this problem. Another problem with deep learning
methods is that they might accidentally remove some textures
similar to the noise and thus blur the images, lead to over-
smoothness. This might indicate that the network needs more
features to distinguish the details of the images from the noise.

Fig. 1  SE block
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Instead of learning more features, which will introduce more
parameters to the network, we can reuse the features extracted by
the former layers as suggested in [20]. Inspired by ResNet [4] and
DenseNet [20], we propose a new network connection that can
easily reuse the original input of the network. We refer to this
connection as an ROI connection. ROI connection creates bypasses
between the original input and subsequent layers. This indicates
that the latter layers of the network possess not only the features
extracted from the input by the former layers but also the original
input itself. Hence, an ROI connection can ease the degradation
problem. Also, with the extra texture details, the network can learn
more accurately and mitigate over-smoothness.

To implement an ROI connection, we concatenate the original
input of the network and feature maps generated by the previous
layer before entering the subsequent layer. To better understand the
proposed ROI connection, we make a comparison among the
residual connection in ResNet, the dense connection in DenseNet
and our ROI connection. Fig. 2 shows these three connections. In
the figure, ‘⊕’ refers to element-wise addition and ‘©’ refers to
channel-wise concatenation. Note that the SE operation is not
necessary for ROI connection. The differences between ROI
connection and the other two connections can be summarised as
follows:

(1) As shown in Fig. 2a, residual connection merges its inputs
together via element-wise addition. This requires the inputs to have
the same dimensions, including height, width, and depth. On the
other hand, as shown in Fig. 2c, ROI connection utilises channel-
wise concatenation for combination. One advantage of

concatenation is that it does not require the inputs to have the same
depth as long as they have the same height and width.
(2) As shown in Fig. 2b, for every concatenation, dense connection
takes not only ‘X’, but also the output of the previous layer, and the
outputs of the layers before as its inputs, while ROI connection
takes only ‘X’ and the output of the previous layer for
concatenation.
(3) In Figs. 2a and b, ‘X’ can be either the original input of the
network or the output of the former layers. However, ‘X’ can only
be the original input in Fig. 2c as an ROI connection only reuses
the original input of the network.

3.3 Proposed ROISEN

Fig. 3b shows the architecture of the proposed ROISEN. Note that
the network contains building blocks called ‘CBRS block’, which
is shown in Fig. 3a. A CBRS block contains a series of operations
including Convolution, BN, ReLU, and SE. We colour different
operations with different colours for better distinction. Given an
input X, the output of a CBRS block, O, can be obtained via the
following equation:

O = CBRS(X) = SE( max (0, BNγ, β(WX + b))) (4)

In (4), (WX + b) refers to convolution, with W as weights and b
as biases. BNγ, β( ⋅ ) represents BN with γ and β as scale and shift,
respectively. ReLU is denoted as max (0, ⋅ ), and SE( ⋅ ) is the SE
block.

As can be seen in Fig. 3b, the proposed ROISEN contains four
CBRS blocks and one regular convolutional layer. Also, the red
lines indicate the proposed ROI connections. Moreover, ROISEN
does not have any pooling layers besides the global average
pooling used in SE blocks. Since the pooling layer tends to reduce
the size of the image too quickly, which is a severe problem for us
since our training set contains images of small size. Furthermore,
the pooling layer leaves out too much information, which we
believe is against our goal as we want to utilise as much
information as possible for image restoration after rain removal.

Given the network input X, the proposed ROISEN can be
described as follows:

O1 = CBRS1(X) (5)

Oi = CBRSi([X, Oi − 1]) (6)

O5 = conv([X, O4]) = W5[X, O4] + b5 (7)

where i = 2, 3, 4, and [ ⋅ , ⋅ ] refers to channel-wise concatenation,
i.e. the ROI connection in this work. O5 is the final output of
ROISEN.

3.4 Network implementation

In this part, we will discuss the implementation details of the
proposed network.

Fig. 2  Comparison of different network connections
(a) Residual, (b) Dense, (c) Proposed ROI

 

Fig. 3  Network architecture of ROISEN
(a) CBRS block, (b) Proposed ROISEN
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3.4.1 Data sets: In order to train the proposed network, clear
images and their corresponding rainy versions are needed. It is a
big challenge to capture a rainy scene and its corresponding clear
version in the real world due to the changing of the air light and
object movements such as the leaves swayed by the wind.
Therefore, a widely used trick is to first collect a large number of
clear images of real-world scenes, and then synthesise their rainy
version with rain streaks of different orientations following the
instruction of the document on http://
www.photoshopessentials.com/photo-effects/rain/.

With the trick introduced above, 127 clear images are collected
and their rainy versions are synthesised for this work. Also, they
are cut into a fixed size, which is 33 × 33 in this work. After the
cut, we have around 96,200 image patches for training and 14,500
for validation.

We train the proposed ROISEN with different inputs, one is the
original images and the other is the detail layers of images. To
obtain the detail layers of all the images, we adopt the technique
introduced in [23], i.e. instead of decomposing the rainy image and
its corresponding clear image with two filters as in [21, 22], we
only need one filter to get the detail layers of an image pair. More
specifically, in [21, 22], for a rainy image X and its corresponding
clear image Y, the detail layer can be obtained by subtracting the
base layer from the image, with the base layer obtained by a low-
pass filter [36]. Then, the detail layers are used for training, while
the base layers Xbase and Ybase are omitted with the assumption that
they are equal. This process can be described as follows:

Xdetail = X − Xbase, Ydetail = Y − Ybase (8)

However, as stated in [23], Xia et al. found that the base layers
are not equal. In fact, with the effect of rain, the pixel values in the
base layer of the rainy image are greater than that of the clear
image, i.e. Xbase > Ybase. Therefore, when the network is trained to
learn Xdetail = Ydetail, the rain removal result will not be accurate
since (Xdetail + Xbase) > (Ydetail + Ybase). To overcome this issue, Xia
et al. used Xbase to replace Ybase, then the detail layer of the clear
image can be obtained via the following equation:

Ydetail′ = Y − Xbase (9)

Then, the rain removal result will be more accurate when the
network is trained to learn Xdetail = Ydetail′ , since
(Xdetail + Xbase) = (Ydetail′ + Xbase). According to the paper, this little

change can accelerate training, and help the network learn the
correct luminance information.

3.4.2 Settings: The parameters settings of convolutional layers in
ROISEN are listed in Table 1. The setting of filter size is inspired
by Dong et al. [17]. As can be seen in the table, we do not use
ReLU in the last layer. It is an empirical setting that the activation
function is not used in the last layer of a neural network. We utilise
padding for all convolutional layers along with a unitary stride to
ensure all intermediate feature maps and the final output have the
same size as the input. To maintain the output size, for unitary
stride, the padding size P can be calculated via the following
equation based on the filter size, F × F:

P = F − 1
2 (10)

3.4.3 Training: The training of the network aims at minimising the
following loss function:

L Θ = 1
N ∑

i = 1

N
∥ F Xi, Θ − Yi ∥2 (11)

In (11), we use Θ to represent all the parameters of the network.
F( ⋅ , Θ) represents the rain removal result, i.e. the output of the
network. Xi and Yi are the ith input rainy patch in the training set
and the corresponding clear patch, respectively. N denotes the total
number of patches in the training set, which is 96,197 in this work.

The training process is carried out on a PC with deep learning
framework Caffe [37], six CPUs of Intel i7-8700, 32 GB memory
and a GPU of NVIDIA GeForce 1080.

4 Experiments
In this section, we will make a comparison between the proposed
ROISEN and some other network architectures first. The difference
in training the proposed network with two different kinds of inputs
will be discussed as well. Then, we will carry out the comparison
among different methods.

4.1 Different network architectures

To demonstrate the effectiveness of the proposed ROISEN, we
conduct an experiment between ROISEN and some other different
network architectures. These network architectures are listed in
Table 2. In the table, PlainCNN denotes the network that contains
only convolutional layers and activation function, ROICNN refers
to the network that adds ROI connections, ROISEN-NoBN
represents the network that utilises ROI connections along with SE
blocks but without BN, and ROISEN is the proposed network. We
aim at revealing the improvements that ROI connection, SE block,
and BN bring to the convolutional neural network, hence the
settings of convolutional layers remain the same as listed in Table
1.

To quantitatively evaluate these networks, we run them on
Rain12 data sets [2] to get the peak signal-to-noise ratio (PSNR)
[38] and structural similarity (SSIM) [39] values of their rain
removal results. PSNR and SSIM are two widely used full-
reference image quality assessments, and higher value indicates
better quality. The average results are listed in Table 3. Note that all
networks are trained with the rainy images directly, not the detail
layers.

As can be learned from Table 3, PlainCNN has the lowest
PSNR and SSIM values, while ROICNN scores are little higher.
This indicates that the network can benefit from ROI connection.
Compared to ROICNN, the PSNR and SSIM values of ROISEN-
NoBN is higher, which shows the effectiveness of the SE block.
Among these networks, the proposed ROISEN possesses the
highest PSNR and SSIM values, which implies that ROISEN has
the best rain removal result, proving that BN can be useful for rain
removal from a single image. Though the increment of the SSIM

Table 1 Parameters settings of convolutional layers
Layers Filter size Filter number Use ReLU Padding
layer 1 9 × 9 128 yes 4
layer 2 1 × 1 128 yes 0
layer 3 5 × 5 64 yes 2
layer 4 3 × 3 64 yes 1
layer 5 3 × 3 3 no 1
 

Table 2 Architectures of different networks
Networks ROI Connection SE Block BN
PlainCNN no no no
ROICNN yes no no
ROISEN-NoBN yes yes no
ROISEN yes yes yes
 

Table 3 Quantitative results of different networks on Rain12
datasets
Metrics PlainCNN ROICNN ROISEN-NoBN ROISEN
PSNR 31.53 32.10 33.05 33.90
SSIM 0.9536 0.9549 0.9610 0.9616
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value of ROISEN is minute compared to ROISEN-NoBN, the
PSNR value has a notable improvement.

4.2 Results on different training inputs

We make an explicit comparison between two different training
inputs. One is the rainy images, and the other one is the detail
layers of rainy images. For unambiguous depiction, we refer to the
network trained with rainy images directly as ROISEN-R, and the
network trained with detail layers as ROISEN-D. We run these two
networks on two data sets to get their PSNR and SSIM values. The
first data set is the Rain12 data sets, and the other one contains ten
images that are randomly selected from the testing set used in [40,
41]. We refer to the latter data sets as New10 data sets. The average
results are listed in Table 4. Columns ‘PSNR1’ and ‘SSIM1’ list
the PSNR and SSIM values of Rain12 data sets, while ‘PSNR2’
and ‘SSIM2’ list that of, extitNew10 data sets.

As listed in the table, ROISEN-D scores the higher PSNR and
SSIM values on both data sets compared to ROISEN-R, which
means that the rain removal results of ROISEN-D have better
quality than that of ROISEN-D. It also indicates that the proposed
ROISEN would achieve better rain removal performance when
trained with detail layers. One possible explanation is that when
trained with detail layers, the network can focus better on the
features of rain streaks as the detail layers contain only the texture
information, leaving other information in the base layers. Based on
this finding, we will compare ROISEN-D with state-of-the-art
methods. Also, for consistency, we will use ROISEN to represent

ROISEN-D, i.e. ROISEN refers to the proposed network trained
with detail layers in the rest of this paper.

4.3 Results on synthetic images

To demonstrate the effectiveness of the proposed ROISEN, we
compare our method with some state-of-the-art methods, including
discriminative sparse coding (DSC) [31], layer priors (LP) [2],
DetailNet [22], De-Raining Convolutional Neural Network
(DRCNN) [34] and DID-MDN [33]. We retrain DRCNN with our
data sets following the settings in the paper. Also, the codes of
other methods are generously provided by the authors. We run all
these methods on Rain12 data sets and New10 data sets to get the
quantitative results. The average results are listed in Table 5. Note
that columns ‘PSNR1’ and ‘SSIM1’ list the PSNR and SSIM
values of Rain12 data sets, while ‘PSNR2’ and ‘SSIM2’ list that of
New10 data sets.

As shown in the table, the proposed ROISEN has the highest
PSNR and SSIM values on both data sets, which indicates that
ROISEN has the best rain removal performance among these
methods. As for DID-MDN, the published testing code generates
output with a size of 512 × 512, therefore, we have to resize the
output back to the original size to get the PSNR and SSIM values.
This kind of operation would cause the loss of some information,
hence leads to low-image quality and low-PSNR and -SSIM
values. When testing on New10 data sets, the SSIM value of
DetailNet is close to that of ROISEN, but the PSNR value of
ROISEN is greater than that of DetailNet.

Figs. 4 and 5 show the rain removal results of the mentioned
deep learning-based methods on two images in Rain12 data sets
and New10 data sets. As shown in Fig. 4d, the result of DID-MDN
still contains rain streaks at a noticeable level, while DetailNet,
DRCNN, and the proposed ROISEN remove most of them.
Moreover, as shown in Fig. 4f, the result of ROISEN contains
fewer rain streaks and reserves more details such as the whiskers of
the animal highlighted with a red rectangle. Similar situations can
be found in Fig. 5. In Fig. 5d, DID-MDN can remove some rain
streaks while still leaving a lot of them in the result. The results of
DRCNN are better than that of DID-MDN visually as shown in
Fig. 5e, but still not good enough. Among these methods,
DetailNet and ROISEN seem to have the best rain removal results,
which are shown in Figs. 5c and f. As a reference, the PSNR and
SSIM values of Fig. 5c are 34.16 and 0.9859, respectively, while
that of Fig. 5f are 34.40 and 0.9871.

Table 4 Quantitative results of different training inputs
Networks PSNR1 SSIM1 PSNR2 SSIM2
ROISEN-R 33.90 0.9616 27.70 0.9126
ROISEN-D 34.80 0.9688 29.84 0.9310
 

Table 5 Quantitative results of different methods
Methods PSNR1 SSIM1 PSNR2 SSIM2
DSC 28.95 0.8836 26.25 0.8789
LP 32.21 0.9442 28.51 0.9128
DetailNet 31.45 0.9291 28.89 0.9309
DID-MDN 28.51 0.8901 24.37 0.8510
DRCNN 31.36 0.9485 27.82 0.9168
ROISEN 34.80 0.9688 29.84 0.9310
 

Fig. 4  Rain removal result of different methods on one image in Rain12 data sets
(a) Rainy, (b) Ground truth, (c) DetailNet [22], (d) DID-MDN [33], (e) DRCNN [34], (f) ROISEN
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4.4 Results on real-world images

When tested on real-world rainy images, they do not possess the
corresponding rain-free images. Thus, neither PSNR nor SSIM can
be used as a quantitative measurement. Also, since there are no
reliable no-reference image quality assessments exist yet, we
evaluate all deep learning-based methods by the visual quality of
their rain removal result in this section. Figs. 6 and 7 show two
comparisons of different methods on two real-world images
‘obama’ and ‘roof’. 

As can be seen in Fig. 6d, for DRCNN, even though it could
remove rain streaks, it introduces the blurry look to the result. As
shown in Fig. 6b, the result of DetailNet contains fewer rain
streaks. However, some details are lost as well, such as the
wrinkles of the sleeve, and the edge of the rostrum beneath the
microphone, which are highlighted with red rectangles in the
figure. On the other hand, the proposed ROISEN can reserve most
of the details and remove most of the rain streaks. Also, it does not
cause over-smoothness or the blurry look in the result, as shown in
Fig. 6e.

Similar situations can be found in Fig. 7. As shown in Figs. 7c
and d, the result of DID-MDN contains lots of rain streaks, while

DRCNN introduces the blurry look. The results of DetailNet and
ROISEN suffer from over-smoothness slightly this time as well.
One possible reason is that the rain streaks in the region under the
roof are too dense and overlap each other, leaving limited
background information available for reconstruction. Overall, the
results of the proposed ROISEN have visual quality comparable to
that of DetailNet, while better than that of most state-of-the-art
methods including DRCNN and DID-MDN.

4.5 Running time

Besides quantitative and qualitative comparison, we also make a
comparison among the running times of all deep learning methods
mentioned above. Note that in this section, the running time of
deep learning methods means the testing time when running on
GPU. We measure the running time of all four deep learning
methods on different image sizes. Every method runs five times on
each image size and the average running time is recorded in Table
6. All methods are run on a PC with MATLAB R2014a, six CPUs
of Intel i7-8700, 32 GB memory and a GPU of NVIDIA GeForce
1080.

Fig. 5  Rain removal result of different methods on one image in New10 data sets
(a) Rainy, (b) Ground truth, (c) DetailNet [22], (d) DID-MDN [33], (e) DRCNN [34], (f) ROISEN

 

Fig. 6  Rain removal result of different methods on real-world image ‘obama’
(a) Rainy, (b) DetailNet [22], (c) DID-MDN [33], (d) DRCNN [34], (e) ROISEN
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As listed in the table, DRCNN has the shortest running time for
all three image sizes. This is expected since DRCNN contains two
networks that add up to four layers. Also, the numbers of filters are
small. An interesting finding is that for DID-MDN, the running
time is almost the same for all sizes. This is probably because
according to the published code, DID-MDN resizes the input into a
fixed size first and then performs rain removal. As the image size
increases, the running time of ROISEN is comparable to that of
DetailNet. It can be noticed that all methods take no longer than
half a second. The running time would be longer as the image size
increases. However, it would still be pretty fast for the deep
learning method to perform rain removal on a single image,
especially with the aid of GPU. For comparison, when dealing with
an image of size 800 × 800, DSC takes about 5 min, and LP takes
about 18 min. Both are way longer than that of the deep learning
methods.

5 Conclusion
In this study, we propose a ROISEN to address the problem of
removing rain streaks from single images. First, we introduce a
new network connection called ROI connection. ROI connection
can provide more texture details for the network, which is crucial
for the restoration after rain removal. SE block and BN are adopted
to further improve rain removal performance. We train the
proposed ROISEN with two different kinds of inputs: the rainy
images and the detail layers and conduct a comparison between
them, confirming that training with detail layers would improve the
performance of ROISEN. Experimental results show that the
proposed network has a comparable performance on both synthetic
images and real-world images to state-of-the-art methods. Future
work involves enlarging the data sets and developing a more
accurate rain model.
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