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Abstract
To facilitate the input and improve the practicality of the existing virtual fitting systems, we propose a fully automatic 3D
virtual fitting system to fit garment onto human models with various shapes and poses using a 2D full-body image and a
3D garment model. The proposed method constructs the 3D human model from the input 2D full-body image of the user
by adopting the SMPLify method. To automatically position garment models onto human models with arbitrary postures,
we present a 3D mesh segmentation method based on the discrete Reeb graph to accurately segment the different parts of a
garment model, and a skeleton driving method based on mean curvature flow, which automatically adjusts the posture of the
garment model according to the skeleton structural difference between the human model and the garment model. In addition,
for the purpose of obtaining a more natural dress effect, we further adopt interpenetration removal and physical simulation
for the deformed garment model. Compared to existing automatic 3D virtual fitting systems, the experimental results, we
obtained based on the Leeds Sports Pose dataset, reveal that the proposed virtual fitting system is stable and effective.

Keywords Virtual fitting system · SMPLify · Mesh segmentation · Skeleton driving method

1 Introduction

The virtual fitting system is able to figure out the result
of fitting a specific garment on a virtual human body in
three-dimensional space, which can considerably improve
the customer experience of online shopping and the effi-
ciency of trying on dresses in physical stores. In the last
decades, many 3D virtual fitting systems have been pro-
posed. Some of them are not automatic and require human
interaction [1,2]. Other methods [3–5], although automatic,
require the input human model and garment models to have
the same posture. To address these problems, some meth-
ods of fitting garment models onto human models with
different postures have been proposed in recent years [6–
11]. However, all these methods require a 3D human model
as input, and some methods even require a 3D reference
human body mesh model wearing a 3D garment. Because
of the specific requirements of these methods for human
models, it is difficult to popularize these virtual fitting
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methods. In addition, some garment fitting methods [10,12]
are very time-consuming, because their energy equations
constructed to solve core problems are relatively com-
plex.

From our perspective, there are five necessary require-
ments for a qualified virtual fitting system. Firstly, the virtual
fitting system is supposed to fit garment models onto human
models with different postures. Secondly, the fitting results
are required to reflect whether the input garment model fits
the human model. Thirdly, the virtual fitting system is sup-
posed to be automatic. Fourthly, the inputs of the automatic
virtual fitting system should be simple, or to say, we can get
the input information easily. Fifthly, the time for automatic
fitting is supposed to be reasonable enough for real-time
application.

Based on the five requirements above, we proposed a fully
automatic virtual fitting system based on skeleton driving.
The pipeline overview of the proposed automatic virtual fit-
ting system is depicted in Fig. 1. Given a single full-body
image, we first construct a SMPL human model [26]. Then,
we segment the input 3D garment mesh model into primary
body parts by our improved segmentation method. After
that, we deform the garment model appropriately to fit the
SMPL human model based on the structural difference of
the human skeleton and garment skeleton. Finally, we dress

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-020-01853-1&domain=pdf


1076 G. Shi et al.

Fig. 1 Pipeline overview. Steps of the proposed automatic garment fitting system

the deformed garment model onto the SMPL human model
automatically.

Our system has the following advantages: Firstly, the sys-
tem does not require any user intervention. Secondly, the
inputs of our systemare just a single 2D full-body image and a
3D garment mesh; therefore, it is convenient for users to cus-
tomize their body models to match their heights and shapes
through our system. Thirdly, our system can be applied for
human images with various postures and shapes. Fourthly,
the automatic dressing component of our system is effi-
cient. In conclusion, our system is practical, usable and
user-friendly; therefore, it can be applied to many applica-
tion scenarios such as online shopping and physical store.
The contributions of our system are summarized as fol-
lows:

(1) We design a fully automatic 3D virtual fitting system.
Different from existing 3D virtual fitting systems that
need 3D human models as input, the system automat-
ically fitting the given garment model onto the human
model constructed from the input full-body image.

(2) We propose a 3D mesh segmentation method based on
discrete Reeb graph. The proposedmethod improves the
accuracy of segmentation in the upper arm and upper
thigh of garment models and effectively avoids the dis-
tortion of fitting garment models onto the humanmodel.

(3) We present a mean curvature flow-basedmethod to fine-
tune the posture of the input garmentmodel according to
the structural difference between the extracted skeletons
of the garment model and the human model; therefore,
we can easily fit the garment model onto the human
model with any postures.

2 Related work

2.1 Constructing Humanmodel from images

It is feasible to construct a human model according to human
body parameters such as height and weight in a virtual try-on
system [13,14]. However, compared to constructing a human
model from images, thesemethods cannot specify the posture
of the human model. It is a challenging problem to estimate
the posture and shape of the human body from a single image.
In order to solve this problem,many researchers usemonocu-
lar image sequences or video sequences as reference [15–19],
or explore alternative sensors [20,21]. Although these meth-
ods can obtain high accuracy, for a virtual fitting system,
taking a single image as input is more practical.

Early works [22,23] use silhouettes or keypoints to
estimate the parameters of the SCAPE model [24] from
image, which often require some user intervention. Recently,
Bogo et al. propose the first fully automatic approach,
SMPLify [25], to predict 3D human shape based on SMPL
model. They first extract 2D keypoints of the image by
DeepCut. Then, they construct an objective function to fit
the predicted 3D joints of SMPL model to the detected 2D
keypoints using pose and shape priors to guide the opti-
mization to obtain the key parameters of SMPL model.
Beyond SMPLify, Lassner et al. [27] improve the fitting
procedure using the estimated silhouettes. In general, these
optimization-based methods require a good initialization,
have slow running time and fail in some cases because of
local minima. Therefore, recently, many regression-based
methods have been proposed [28–35]. Taking the parts seg-
mentation [32], keypoints and estimated silhouettes [29], raw
pixels of the image [31] or hybrid annotations [35] as inputs,
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thesemethods regress SMPLparameters directly by applying
different losses. Thesemethods all achieve goodperformance
in terms of accuracy and time consumption. However, these
methods use various reprojection losses, which are weak
supervisory signals. Therefore, instead of enforcing repro-
jection losses, Kolotouros et al. [34] optimize the regress
shape with SMPLify [25] and use optimized parameters to
supervise the network. Instead of regressing SMPL param-
eters directly, Kolotouros et al. [33] regress the locations of
the mesh vertices with the use of a graph CNN.

2.2 Dressing virtual avatar

Existing methods for dressing virtual avatar can be mainly
classified into three categories: garment transfer, garment fit-
ting and learning to dress methods.
Garment transfer methods Given a target human model,
garment transfer methods transfer the garment from the ref-
erence human model to the target human model, taking good
advantage of the corresponding relationship between the ref-
erence and target human models. Li et al. [5] propose a
method that transfers garment models based on the cross
section of models and a constrained volumetric graph defor-
mation. However, this method requires that the model is
supposed to be in a rest pose. Brouet et al. [3] propose an
automatic garment transfer method, which can be applied
for humanmodelswith a different shape. Themethod regards
garment transfer as an optimization problem and efficiently
solves the problem. However, this method requires a refer-
ence humanmodelwhich has the same posturewith the target
human model. In order to transfer the garment to the human
model of any postures, many methods are proposed [6–9].
However, all of these methods require two human models
and a garment mesh as inputs, which are not simple enough.
Pons-Moll et al. [4] propose a novel method, which can esti-
mate the garments and their motions from 4D scans of fully
dressed people and retarget the garments to new humanmod-
els. Although the inputs are simple and the results are natural,
this method cannot transfer the garments to human models
with different postures.
Garment fitting methods Compared with garment transfer
methods, garment fitting methods do not require a reference
human body model and directly fit the garment models onto
the human models. Therefore, if there is not available refer-
ence humanmodel, for examplewhen the garment is obtained
by a 3D laser scanner, garment fitting methods will be better.
In the early stage, techniques of garment dressingmostly sew
the 2D garment pieces or pattern on 3D human model [36–
38]. Instead of sewing garments, a fitting method computes
the transformation matrix of the garment model based on
feature points [1]; however, this method is not fully auto-
matic and cannot fit the garmentmodel onto the humanmodel
with any postures. Jituo Li et al. [2] use the skeleton driving

method to change the pose of the garment and then adjust
the garment locally to get a more natural result. Although
it can be applied for a human model with any postures, the
procedure of adjusting the skeletons is not automatic. A fully
automatic garment fitting method proposed by Tisserand et
al. [10] minimizes the surface energy function to animate the
humanmodel to fit the garment model. Although this method
can be applied for a human model with most postures, the
consuming time of the minimization procedure is relatively
long because the energy equation has many variables. There-
fore, NannanWu et al. [11] improve this method based on the
skeletons of human models. Although the improved method
is more efficient and can be applied for various type of gar-
ments, similar to the work of Tisserand et al. [10], it cannot
reflect whether the garment model fits the human model; in
addition, according to the type of garment, the joints involved
need to be selected manually.
Learning to dress methods Guan et al. [12] obtain a model
learned from simulating the garment on the body with vari-
ous shapes and postures. However, giving a different garment
model, it is difficult to obtain the training set, and the tedious
training process needs to be repeated, which is quite labor
intensive. Clegg et al. proposed two methods [39,40] for ani-
mating human dressing. However, the system [39] requires
the user to specify the sequence of actions in the dressing
process for a dressing task, and the system [40] can only
perform upper body tasks.

3 Humanmodel construction

The3Dhumanmodel is an essential part of a 3Dvirtual fitting
system. However, the 3Dmodel of a user is not always avail-
able, so we integrate a 3D human modeling method based
on the full-body image into our system. We construct our
human body based on the SMPL model [26], a parameter-
ized human model. The SMPL human model is defined by a
function M(θ, β), where β is the shape parameter and θ is
the pose parameter. The output of the function M(θ, β) is a
watertight triangular meshMwith 6890 vertices and 13,766
faces. Therefore, with the use of the SMPL parameters θ and
β, we can obtain the mesh of the target SMPL human model
directly. Then, we can use the transformation matrix of each
joint to calculate the positions of all transformed joints. By
linking the joints orderly, we can obtain the skeleton structure
of the target SMPL human model, which contains 23 joints
and 22 edges.

We use SMPLify [25], the first fully automatic approach,
to estimate SMPL model parameters from a single RGB
image. This system first extracts the 2D joint locations of the
image by DeepCut [42]. Then, for the purpose of minimiz-
ing the error between the detected 2D joints and the projected
3D joints of a SMPL human model, the system constructs an

123



1078 G. Shi et al.

Fig. 2 Garment deformation results after segmenting garment with dif-
ferent segmentation methods

objective function. Byminimizing the objective function, the
system can obtain the key parameters of a SMPL model.

4 Garment segmentation

In the step of segmenting garment, we first segment the gar-
ment model using a discrete Reeb graph-based method [43],
which is a method for segmenting human models. However,
the segmentation results at the upper arms for clothes or upper
thighs for trousers are not accurate enough; therefore, we
refine the segmentation results after applying the discrete
Reeb graph-based method.

4.1 Coarse segmentation

The discrete Reeb graph-based segmentation method [43],
which is based onMorse functions, is applied for coarse seg-
mentation. Because the input garment model is in a rest pose,
we choose a Morse function, namely geodesic distance with
a single source. The results of coarse segmentation are pre-
sented in Fig. 3a, b. It is obvious that the top of the upper
thighs of the trouser and the top of the upper arms of the
cloth are divided into the torso part. In fact, from the human
physiological structure point of view, a more reasonable seg-
mentation should refer to the location of the human joints. In
many cases, this problem is not critical, but it will result in
a distorted garment model mesh in the garment deformation
step, as shown in Fig. 2.

4.2 Optimization

For the purpose of promoting the accuracy of segmentation,
we adjust the segmentation boundaries to refine the segmen-
tation results. In order to refine the segmentation results, we
need to define new boundary surfaces, which are supposed
to be on the joints of human model, as shown in Fig. 3b, d.

Fig. 3 Segmentation results of garmentmodels. aCoarse Segmentation
of a cloth model. b Refining the segmentation result of a cloth model.
c Coarse segmentation of a trouser model. d Refining the segmentation
result of a trouser model

Let G left_sleeve, Gright_sleeve and Gc_torso denote the ver-
tices set of the left sleeve part, the right sleeve part and the
torso part after coarse segmentation, respectively. In order
to refine the segmentation results of a garment model, we
define two boundary surfaces Sc1 and Sc2 between the arms
and torso, as shown in Fig. 3b, and classify the vertices on
the right side of the surface Sc1 and on the left side of the
surface Sc2 as torso part. The keypoints of the garment model
are denoted as Pc

1 and Pc
2 , as shown in Fig. 3a. According

to the results of coarse segmentation, we can obtain the x
coordinates of the keypoints Pc

1 and Pc
2 :

{
Pc
1 (x) = max(v(x)), v ∈ Gright_sleeve

Pc
2 (x) = min(v(x)), v ∈ G left_sleeve.

(1)

Assuming the garment model is facing forward, the sur-
faces Sc1 and Sc2 are both parallel to the Y–Z plane. Therefore,
the surfaces Sc1 and Sc2 can be given as follows:

Sc1 : x = Pc
1 (x).

Sc2 : x = Pc
2 (x).

(2)

Let G left_leg, Gright_leg and G t_torso denote the vertices set
of the left leg part, the right leg part and the torso part after
coarse segmentation, respectively. For the purpose of adjust-
ing the upper thighs of the trouser model, we define two
boundary surfaces St1 and S

t
2 between the thighs and torso, as

shown in Fig. 3d, and divide the vertices below surfaces into
the thigh parts. The keypoint of the trouser model is denoted
as Pt , as shown in Fig. 3c. Then, the point Pt can be figured
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out based on the results of coarse segmentation as follows:

{
Pt (x) = 1

N

∑
v(x), v ∈ G t_torso,

Pt (y) = max(v(y)), v ∈ Gright_leg
⋃

G left_leg,
(3)

where N denotes the number of elements of set G t_torso. The
slope kl of the left straight line in Fig. 3d, which is mostly 1,
is defined according to the type of trousers. The surfaces St1
and St2 can be figured out as follows:

St1 : − kl x + y = −kl P
t (x) + Pt (y),

St2 : kl x + y = kl P
t (x) + Pt (y).

(4)

5 Garment deformation

In Sect. 4, we segment the input garment model into primary
bodyparts. In this section,wedeformeachpart of the garment
model to obtain a deformed garment model with the same
posture as the SMPL human model. Instead of extracting
the skeletons of the human model and garment model in our
previous work [41], we only need to extract the skeletons
of all parts of the segmented garment using mean curvature
flow (MCF)-based method [44]. The human skeleton can be
obtained directly by connecting the joints of the constructed
SMPLmodel. Then, we adjust the orientation of the garment
based on the key joints of the garment and human models.
After that, by comparing the difference in skeleton structure
between the key parts of the garment and the corresponding
parts of the human body, we obtained the deformed garment
skeleton. Finally, we deform the garment mesh according to
the deformed garment skeleton.

5.1 Skeleton extraction

The first step of our garment deformation method is skeleton
extraction. The curve skeleton [45], which is a 1D skele-
tal shape contained edges and points in three-dimensional
space, can represent the central axis of the 3D model. There
are many methods for extracting curve skeleton from a 3D
watertight model [44,46–48]. In our system, we use mean
curvature flow-based method [44], which has a satisfying
performance on cylindrical objects, to extract the skeletons
of each part of the garment model. However, this method
requires a watertight mesh as input, that is, to say, each seg-
mented part of garment mesh needs to be preprocessed to
obtain a watertight mesh, which should be approximated in
shape to the original mesh. In our system, we adopt the hole-
filling method [49] to fill the holes.

Fig. 4 a The input human model. b Deformation result of a garment
without orientation adjustment. cDeformation result of a garment after
orientation adjustment

Fig. 5 Key joints of a cloth model, a trouser model and a human model
(from left to right)

5.2 Orientation adjustment

In our previous work [41], we do not take into account the
case where the torso orientation and the viewpoint are incon-
sistent, or to say, the human torso does not face us directly. To
avoid thedistortionproblem in this case as shown inFig. 4,we
adjust the orientation of the garment model before deforming
it.

The orientation of a garment model can be represented
by a vertical vector and a horizontal vector. Therefore,
according to the key joints of garment models and human
model, as shown in Fig. 5, we can define the orientation
of the cloth model, trouser model and human model as
Dc = {vclothh , vclothv }, Dt = {vtrouserh , vtrouserv } and Dh =
{vhumh , vhumv }, respectively.

Taking the cloth model as an example, the orientation Dc

can be calculated as follows:

{
vclothh = norm(J c2 − J c1 ),

vclothv = norm(J c3 − J c2+J c1
2 ),

(5)

where J c1 , J
c
2 and J c3 are the key joints of the clothmodel, and

function norm(·) represents the normalization of a vector.
The orientations Dt and Dh are calculated in a similar way
to Dc.
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Fig. 6 Abstract representations. a A sleeve skeleton and an arm skeleton. b Making the first node of arm skeleton coincide with that of sleeve
skeleton. c Deformation of garment vertices according to garment skeleton nodes. d Interpenetration phenomenon

There are two rotation matrices corresponding to the two
vectors defined in the model orientation, which are denoted
as Rh ∈ R

3×3 and Rv ∈ R
3×3. First of all, we apply the

rotation matrix Rh to rotate the horizontal vector vclothh to
make it equal to vhumh . The rotation axis r1 and rotation angle
θ can be figured out as follows:

r1 = vclothh × vhumh

‖vclothh × vhumh ‖ , (6)

θ = arccos
( vclothh · vhumh

|vclothh | × |vhumh |
)
. (7)

The matrix Rh can be figured out by the Rodrigues’ rotation
formula.

Then,we apply the rotationmatrix Rv , which is applied for
transferring the vector Rvvclothv to vhumv . Rv can be calculated
in a similarway to Rh . Finally,we can obtain the final rotation
matrix R = RvRh for adjusting the garment orientation. The
results of orientation adjustment are presented in Fig. 5.

5.3 Deformation of garment skeleton

The skeleton can reflect the posture of garmentmodel to some
extent. Therefore, in order to adjust the posture of garment
model to fit the posture of human model, we first deform
the garment skeleton according to the difference in skeleton
structure between the garment model and human model.

As is shown in Fig. 6a, L = {l1, . . . , ln} represents the set
of sleeve skeleton nodes, where n denotes the size of L , and
A = {a1, a2, a3} represents the set of arm skeleton nodes.
Let fseg(vi , v j ) denote the distance between any two nodes
of a skeleton, which is presented as follows:

fseg(vi , v j ) =
j−1∑
k=i

d(vk, vk+1), 1 ≤ i < j, (8)

where d(vi , v j ) denotes the Euclidean distance between
nodes vi and v j in three-dimensional space.

Fig. 7 Corresponding
relationship between skeleton
nodes and mesh

For deforming the sleeve skeleton, the first thing we need
to do is moving the arm skeleton to make the first node of
arm skeleton coincide with that of sleeve skeleton, as shown
in Fig. 6b. For ∀a ∈ A,

a = a + (l1 − a1). (9)

Then, we change the positions of {l2, . . . , ln} to make the
sleeve skeleton and arm skeleton overlap. We can find two
key nodes on the sleeve skeleton li and li+1, which satisfy

fseg(l1, li ) ≤ fseg(a1, a2) ≤ fseg(l1, li+1). (10)

Now, the elbow joint a2 is located on the skeleton segment
li li+1. Let set L ′ = {l ′1, . . . , l ′n} denote the target position of
nodes in L . The target nodes l ′2 to l ′i are located on the skeleton
segment a1a2, and the target nodes l ′i+1 to l ′n are located on
the skeleton segment a2a3. Therefore, the elements of L ′ can
be figured out as follows:

l ′k =
{
a1 + fseg(l1,lk )

d(a1,a2)
(a2 − a1), 1 < k ≤ i,

a2 + fseg(l1,lk )−d(a1,a2)
d(a2,a3)

(a3 − a2), i < k ≤ n.
(11)

5.4 Deformation of garment mesh

The skeleton extractionmethod [44]maintains the correspon-
dence between the mesh vertices and the skeleton nodes in
the extraction process, as shown in Fig. 7. In addition, this
method guarantees the equation as follows:

M(li )
⋂

M(l j ) = ∅, i �= j and 1 ≤ i, j ≤ n, (12)
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whereM(li ) denotes the set of mesh vertices corresponding
to li ; that is to say, the mesh vertices corresponding to each
node of extracted skeleton are disjoint.

We obtain the deformed skeleton of the sleeve L ′ in
Sect. 5.3. The abstract representation of garment deformation
is presented in Fig. 6c, where the red dotted lines represent
the corresponding vertices of skeleton nodes li and l ′i . The
garment mesh deformation refers to the change of M(li ) to
M(l ′i ) according the position change of li .

The vectorsni andn′
i , as shown in Fig. 6c, are the direction

of the skeleton at nodes li and l ′i , respectively, which can be
calculated as follows:

ni =
⎧⎨
⎩
li+1 − li , i = 1,
li − li−1, i = n,
li+1−li−1

2 , 1 < i < n,

(13)

n′
i =

{
a2 − a1, li is located on a1a2,
a3 − a2, li is located on a2a3.

(14)

According to the Rodrigues’ rotation formula, we can
obtain the rotation matrix Qi ∈ R

3×3 for rotating ni to n′
i .

Then, we expand the rotationmatrix Qi to Q′
i ∈ R

4×4, which
is given as follows:

Q′
i =

[
Qi 0
0 1

]
. (15)

We define two translation matrices T1 ∈ R
4×4 and T2 ∈

R
4×4 for translating the node li to the coordinate origin and

translating the node from the coordinate origin to l ′i+1. The
transformation matrix for the vertices in M(li ) is T2Q′

i T1.
Finally, we use Laplacian surface deformation method [51]
to ensure continuity between adjacent segments.

6 Automatic dressing

Given a SMPL human model and a deformed garment mesh,
we first move the deformed garment mesh to the correspond-
ing part of the human model coarsely based on the feature
joints. Then,we remove the interpenetration between the gar-
ment model and human model. Finally, for the purpose of
generating natural shape, which means that the simulation
results basically need to comply with the physical laws, we
carry out physical simulation for the garment model based
on physical force.

6.1 Coarse move

According to the skeleton of SMPL human model con-
structed by SMPLify [25] and the skeletons of garment
models extracted in Sect. 5.1, we can obtain the key joints
of garment models and human model, as shown in Fig. 5.

Fig. 8 Interpenetration between
a cloth model and a human
model

Then, the translation vectors vc for a cloth model and vt for
a trouser model can be figured out as follows:

vc = Jh1 + Jh2
2

− J c1 + J c2
2

, (16)

vt = Jh4 + Jh5
2

− J t1 + J t2
2

. (17)

6.2 Removal of interpenetration

Because the garment models are elastic, in the natural
state, the shapes of garment models are inconsistent with the
shape of the human model. Therefore, we need to remove
the interpenetration between the human model and garment
model, as shown in Fig. 8, after the coarse move step. The
method we adopt for removing interpenetration is similar
to the method in [12]. The abstract representation of the
interpenetration phenomenon is presented in Fig. 6d. For
any vertex gi on the garment mesh, we denote the vertex
closest to it on the human mesh as h j . We define a function
fdot(i, j), which represents the inner product of vector nh j

and (gi − h j ):

fdot(i, j) = (gi − h j ) · nh j , (18)

where nh j denotes the normal for vertex h j . It is obvious that
if fdot(i, j) < 0, interpenetration happens; otherwise, not.
Therefore, we can define an objective function

E(G, H) = λ1ν(G, H) + λ2ω(H), (19)

where λ1, λ2 are weights; G is the garment mesh; H is the
human mesh.

To ensure that the vertices on garment mesh are outside
the human mesh, we define a term ν(G, H) to penalize inter-
penetration phenomenon:

ν(G, H) =
∑

i∈I∧(i, j)∈T
(κ − fdot(i, j)), (20)

where κ denotes the distance between the garment mesh and
human mesh; I is the set of garment vertices which penetrate
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Fig. 9 a Unnatural dressing results without applying physical simula-
tion. b Fitting results after applying physical simulation

the human mesh; T denotes the correspondence between
each vertex gi on garment mesh and its closest vertex h j

on human mesh.
The term ω(H), which is defined for maintaining the

smoothness of the surface of the garment mesh, makes the
deformation of a vertex similar to the deformation of its adja-
cent vertex. This term is presented as follows:

ω(H) =
∑
i∈H

∥∥∥(g′
i − gi ) − 1∑

k∈Ni

1
d(gk ,gi )

∑
j∈Ni

(g′
j − g j )

d(g j , gi )

∥∥∥2,
(21)

where Ni denotes the set of vertices adjacent to the vertex
gi ; g′ denotes the vertex before removing interpenetration;
d(gi , g j ) denotes the Euclidean distance between vertex gi
and g j .

Finally, we adopt a linear least squares solver to minimize
the objective function E(G, H).

6.3 Physical simulation

The deformation of the garment model is rigid and based
on geometry. For the reason that the physical characteristics
of the garment are not considered, the dressing results are
unnatural, as shown in Fig. 9a. The parts of the garment
model indicated by red dotted circle are floating, which are
unnatural. In addition, the garment models in the figure seem
stiff. The fitting results after applying physical simulation are
presented in Fig. 9b.

For the purpose of obtaining more natural shape, we sim-
ulate the garment models by mass–spring system. The edges
of the mesh of garment model represent the tension springs,
and the rest length of the tension spring is the initial edge
length. The resultant force on particle gi is

fi = f gi + f di + f bi + f dbi + f si + f dsi , (22)

where f gi denotes gravity; f di denotes global damping force;
f bi denotes bending force; f dbi denotes the damping force of
bending spring; f si denotes elastic force; f dsi denotes the
damping force of elastic spring.

Let fi (t) denote the resultant force on particle gi at time
t . The velocity and position of particle gi at time t can be
calculated as follows:

vi (t) = vi (0) +
∫ t

t0

fi (t)

mi
dt (23)

si (t) = si (0) +
∫ t

t0
vi (t)dt (24)

Finally, with the use of theRunge–Kutta fourth-order inte-
gralmethod, the positions of the vertices during the numerical
simulation can be calculated efficiently and stably.

7 Experimental results

For the purpose of evaluating the proposed virtual fitting sys-
tem, we take several full-body images from Leeds Sports
Pose (LSP) dataset [50] and several types of garment from3D
modeling software as inputs. The imageswe used are denoted
as I = {I1, . . . , I8}, as shown inFig. 10.Our proposed virtual
fitting system can dress different types of garment on human
model constructed from the input image automatically. In
most cases, we obtain satisfying fitting results; however, in
some cases, we cannot get good results. We analyze these
unsuccessful cases and the limitations of our system in the
Limitation section.

7.1 Results analysis

Same garment with different human postures The fitting
results of dressing the same cloth on human models con-
structed from different images are presented in Fig. 10.
Regardless of the posture in the input image, the system can
get an ideal natural dressing result. It is obvious that the gar-
ment mesh and human mesh do not penetrate each other; in
addition, after physical simulation, the garment is no longer
stiff and not floating. What’s more, the system can dress the
same garment on humanmodels with different shapes, which
reflects the elasticity of the garment.
Same human image with different garments We manage to
dress various types of garments on the constructed human
model, as shown in Fig. 11. The fitting results are natural;
therefore, our proposed virtual fitting system is suitable for
various types of garments.
Different perspectives For the purpose of confirming whe-
ther our fitting results are satisfying, we present different
perspectives of the fitting result of fitting a garment model on
a human model in Fig. 12. Our proposed system can present
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Fig. 10 Fitting a 3D garment model onto the human bodies constructed from several images of Leeds Sports Dataset

Fig. 11 The fitting results of dressing four types of garments on the human model constructed from image I2

Fig. 12 Different perspectives of the fitting results of dressing a cloth on the human model constructed from image I8
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Fig. 13 The fitting results of dressing four different sizes of trousers on the human model constructed from image I4

the fitting results in 3D space, which is convenient for users
to evaluate the fitting result from various perspectives.
Same human image with different sizes of garment In Fig. 13,
trousers of four different sizes are dressed on the same human
model constructed from the image I4. We denote the sizes
of these four trousers as P1, P2, P3 and P4, which are incre-
mental, i.e., P1 < P2 < P3 < P4. According to the visual
appearance, it seems that the size P2 trouser is the best fit. The
size P1 trouser seems like a trifle small and tight. The legs
of size P3 trouser are a trifle loose. The size P4 trouser is so
loose that it cannot be worn on the human model; therefore,
the trousers slide down during the physical simulation.
Different resolution clothes In Fig. 14, we present the fitting
results of dressing clotheswith different resolutions. Accord-
ing to the visual effects, the result of the T-shirt with higher
resolution is more natural; however, the fitting result of the
lower-resolution T-shirt is also satisfactory. Therefore, for
high-resolution clothes, we can simplify the mesh properly
to reduce the time spent on fitting.
Custom full-body image In Fig. 15, we present the fitting
result of dressing garments on the human model constructed
from a user-input custom full-body image. The garments
have similar styles and colors to the garments in the input
image. Although the lights are different in the two scenes, it
turns out that the visual effect of the dressing result is rela-
tively natural and similar to the image.

7.2 Performance evaluation

All experiments are conducted on a computer equipped with
an Intel 4 × 2.50 GHz CPU, and the calculation time of the
main steps of garment fitting is given in Table 1. Accord-
ing to this table, the interpenetration removal and garment
deformation contribute to most of the computational cost.

The consuming time of garment segmentation step is
mainly determined by the number of the vertices and topol-
ogy of the garment model; therefore, shirt 2 having more

vertices than shirt 1 needs to spend more time to segment,
and pants having more vertices than shirts spend less time to
segment because of their simpler topology.

The time it takes to deform the garment is independent of
the posture of the human model; therefore, the time spent on
deforming shirt 2 to fit the human model constructed from
image I2 and I4 is substantially equal. In fact, the time it takes
to deform the garment is mainly determined by the number
of vertices. It is obvious that it takes more time to deform the
garment with more vertices. In addition, the topology of the
garment also determines the time for the garment deforma-
tion step, because the topology of the garment model is the
main factor affecting the time for skeleton extraction.

The time for removing interpenetration is determined by
the number of elements of the set of garment vertices which
penetrate the human mesh; therefore, for the same human
model constructed from image I4, it takes less time for pant
1with larger size to remove interpenetration, because a larger
pant means fewer vertices that penetrate human mesh.

7.3 Comparisons analysis

We compare our proposed system with related works in
recent years from five aspects: system input, speed, appli-
cable human postures, applicable garment types, whether
fully automatic, as shown in Table 2. It is obvious that the
input of our proposed system is the easiest to get, which
means our system ismore practical.What’s more, our system
is fully automatic compared to other garment fitting meth-
ods [2,10,11]. Although the system [4] can obtain a dressing
result that is substantially the same as the dressing result in
real life, it cannot be applied to a human model with any
postures.

The systems [2,4,9–11] generally contain many modules,
but they always lack specific implementation details in some
steps. It is difficult to reproduce their works, and we cannot
obtain the overall computation complexities of these sys-
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Fig. 14 The fitting results of
dressing clothes with different
resolutions. a The fitting result
of a T-shirt with 1751 vertices
and 5247 edges. b The fitting
result of a T-shirt with 3550
vertices and 10,644 edges

Fig. 15 The fitting results of
dressing garments on the human
model constructed from a
custom full-body image. a The
input image. b The dressing
result. c The overlapped image

Table 1 Execution time of garment fitting

Garment Image Garment vertices/faces Garment segmentation (ms) Garment deformation (ms) Penetration removal (ms) Total (ms)

Dress I1 5875/11593 788 3552 5071 9422

Shirt 1 I2 3106/9312 223 1568 3984 5781

Shirt 2 I2 3550/7096 355 1957 3754 6070

Shirt 2 I4 3550/7096 349 1924 4075 6355

Pant 1 (P1) I4 4200/8396 271 3619 7011 10904

Pant 1 (P2) I4 4200/8396 266 3630 4534 8439

Pant 1 (P3) I4 4200/8396 279 3637 2929 6861

Pant 2 I5 3062/6120 159 2859 3575 5599

Shorts 1 I5 8196/16388 987 4584 7821 13399

tems. Therefore, we can only compare the critical processes
of our system with those of recently proposed similar sys-
tems [10,11]. Similar to our system, these systems [10,11]
mainly consist of garment fitting, interpenetration removal
and physical simulation. Garment fitting is one of the most
critical steps. Therefore, we conduct complexity analysis and
compare ours with the state of the art [10,11] briefly.

The computational complexity of the optimization step
for the method [10] is O(K · nHnG), where nH is the num-
ber of the vertices of the human mesh; nG is the number of
the vertices of the garment mesh; K is the number of itera-
tions of the optimization step. NannanWu et al. [11] propose
a faster method. Its computational complexity of the opti-
mization step is O(K · nH ). By contrast, the garment fitting
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Table 2 Comparison of similar works

Reference Input Applicable human postures Applicable garment types Whether fully automatic

[9] Reference human model wearing a
garment mesh and a target human
model

Any postures Most garment types Fully automatic

[4] The 4D scans of a reference human
model wearing a garment mesh
and a target human model

Postures sequences consistent
with the reference human
pose sequences

Most garment types Fully automatic

[11] A target human model and a
garment mesh

Any postures Most garment types The joints used in the optimization
procedure require manual
selection

[10] A target human model and a
garment mesh

Any postures Most garment types The joints used in the optimization
procedure require manual
selection

[2] A target human model and a
garment mesh

Any postures Most garment types The adjustment of skeleton is not
automatic

Ours A full-body image and a garment
mesh

Any postures Most garment types Fully automatic

step of our method does not require an optimization step and
the computational complexity is O(nHlognH ). Note that the
computation time of our method is independent of the res-
olution of the human model; therefore, our skeleton-driven
garment fitting method can be applied for a high-resolution
human model with tens of thousands of vertices.

7.4 Limitations

There are mainly four limitations of our proposed system.
Firstly, if the torso of the human model is greatly bent, the
torso of the garmentmodelwill be unnatural after the garment
model is fitted. The reason lays in the fact that the bending
of the garment torso is very different from that of the human
torso after garment deformation, which will distort the gar-
ment model after the removal of interpenetration. However,
in general, the torso of the human body is straight or slightly
bent. One possible solution is to extract the skeleton of the
torso part of the garment model and deform this part based
on the skeleton structural difference between the torso part
of the garment model and human model.

In addition, if the cross section of the torso of the garment
model is significantly different from the cross section of the
torso of the human model in shape and size, the garment will
be distorted after the removal of interpenetration because of
the big difference between the human model and garment
model. From our perspective, a possible avenue for address-
ing this problem is to choose the appropriate size garment by
comparing the size and shape differences between the cross
section of the garment model and the human model.

What’s more, the system SMPLify [25] we applied for
constructing the human model from a single full-body image
is not efficient and accurate enough, especially in shape.

SMPLify is an optimization-based method to fit SMPL to
2D keypoint detections. Similar to other optimization-based
methods, its running time is low and it is not accurate enough
if the initialization is unsatisfying. However, some more pre-
cise and efficient regression-based methods based on SMPL
model have been proposed such as [33–35]. The body size
parameters error of the human model constructed by these
methods has been reduced to 31mm [35]. Since our system
is easy to be extended to any SMPL-based methods to con-
struct the human model from an image, we will improve the
human modeling module with these proposed systems.

Finally, the fitting results are relatively natural, which
means that the results generally meet the basic physical
rules; however, we cannot prove that our fitting results are
satisfactory to the potential consumers, which determines
the application value of our method. Therefore, in future
research, we need to investigate the satisfaction of potential
users by collecting their evaluations of their dressing results,
which is similar to the result in Fig. 15c.

8 Conclusions

In this paper, we present an automatic virtual fitting sys-
tem for fitting the input garment model onto the human
model constructed from the input full-body image. Given a
full-body image, the system first constructs a SMPL human
model from the image. Then, the system segments the gar-
ment model and changes the posture of the garment model
to fit the posture of the human model. Finally, the system put
the deformed garment on the human model; in addition, to
obtain a more natural and authentic fitting result, the system
removes the interpenetration and applies physical simulation
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for the garment. According to the fitting results, our system
is feasible, stable and efficient.
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