
KNOWLEDGE-BASED CHAT DETECTION WITH FALSE MENTION DISCRIMINATION

Wei Liu, Peijie Huang*, Dongzhu Liang, Zihao Zhou

College of Mathematics and Informatics, South China Agricultural University, China
liuliulz09@stu.scau.edu.cn, pjhuang@scau.edu.cn, {liang dz, zz}@stu.scau.edu.cn

ABSTRACT
Chat detection is critical for recently emerged personal in-
telligent assistants (PIA), which can be seen as a hybrid of
domain-specific task-oriented spoken dialogue systems and
open-domain non-task-oriented ones. Recent advances have
attempted to utilize external domain knowledge to enhance
utterance semantics understanding and can contribute to chat
detection. However, it also inevitably introduces false men-
tion (i.e., token spans being misidentified as entity mentions)
in Chat utterances, causing performance to degrade. To
deal with this issue, this paper proposes a new model for
knowledge-based chat detection with false mention discrimi-
nation (FMD-KChat). A two-stage pipeline is adopted, which
contains an additional neural network-based classifier in the
first stage for distinguishing the false mentions and a feature
fusion gate in the chat detection stage for combining the con-
textual representation with the external knowledge feature
based on the false mention discrimination probability. Exper-
iments on the SMP-ECDT benchmark corpus show the well
performance of the proposed model.

Index Terms— chat detection, personal intelligent assis-
tants, false mention discrimination, knowledge-based model

1. INTRODUCTION

Recently emerged personal intelligent assistants (PIA) on
smartphones and home electronics (e.g., Siri and Alexa)
typically perform various tasks (e.g., Web search, weather
checking, and alarm setting) while being able to have chats
with users [1]. They can be seen as a novel hybrid of domain-
specific task-oriented spoken dialogue systems (SDS) [2] and
open-domain non-task-oriented SDS [3]. To realize such
hybrid SDS, we have to determine whether or not a user is
going to have a chat with the system. For example, if a user
says “What is your hobby?” it is considered that she is going
to have a chat with the system. On the other hand, if she says
“Set an alarm at 8 o’clock,” she is probably trying to operate
her smartphone. This task is referred as chat detection and is
treated as a binary classification problem [1].

Recent advances on nature language understanding (NLU)
are overwhelmingly contributed by deep learning techniques

* Corresponding author.

ID Utterance Label
S1 Launch Benben Reading. NonChat
S2 I don’t want to say. I am in a bad mood. Chat

Table 1: Example of utterances with true or false mention.
Bold for entity mentions.

[4–6], which have taken the state-of-the-art of NLU to a new
level. The core architecture of the chat detection models that
using a binary neural classifier is shown in Figure 1(a). How-
ever, fully data-driven neural classification models [7–11]
tend to have limitation on inadequate expression of domain
entity mentions (i.e., token spans representing entities in a
user utterance) for lack of domain knowledge and result in
insufficient semantics learning of entity mentions.

Several studies have been proposed to integrate knowl-
edge information to learn a knowledge-based sentence rep-
resentation on text classification [12], speech understanding
[13], and utterance domain classification (UDC) [14, 15]. In
this paper, we follow this line of research and propose a base
model of knowledge-based chat detection (KChat). The core
architecture of KChat is shown in Figure 1(b), in which the
knowledge feature is concatenated with the contextual rep-
resentation in the binary neural classifier. The knowledge
feature used to enhance utterance semantics understanding
can derive from mention-type pairs retrieved from external
knowledge bases (KBs). S1 in Table I shows an examples
of retrieved entity mention in NonChat utterance that will
benefit the chat detection model. However, some false men-
tions are also inevitably introduced in Chat utterances. S2
in Table 1 shows the false mention problem, where the mu-
sic type mention “I am in a bad mood” in the utterance is
mistakenly retrieved from KB. As a result, the performance
of knowledge-based chat detection model will be degraded
by penetrating false knowledge into neural classifier. Pre-
vious work [15] proposes a knowledge-gated mechanism to
control the weights for external knowledge. However, it only
uses the representation of external knowledge to realize gate
mechanism, which does not truly consider how to discrimi-
nate whether the external knowledge in an utterance should
be introduced and is lack of interpretability.

To deal with the above challenge, we propose a knowledge-
based chat detection model with false mention discrimination
(FMD-KChat). The overall principle can be seen in Figure
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(a) Existing framework (b) KChat framework (c) FMD-KChat framework

Fig. 1: (a) The core architecture of the chat detection models using a binary neural classifier. (b) The base model of knowledge-
based chat detection (KChat). (c) Our idea of knowledge-based chat detection with false mention discrimination (FMD-KChat).

1(c). A false mention discrimination (FMD) is proposed to
discriminate whether the external knowledge in an utterance
should be utilized or not. Note that our FMD’s supervised
labels can be extracted from chat detection task without extra
labeling effort. Moreover, we propose a two-staged pipeline
to integrate the false mention discrimination into KChat. An
additional neural network-based classifier is applied to distin-
guish the false mentions from the retrieved ones. Then in the
chat detection stage, a feature fusion gate is used to combine
the contextual representation with the external knowledge
feature based on the false mention discrimination probability
instead of incorporating external knowledge directly. Experi-
mental results on public benchmark corpus SMP-ECDT show
that the proposed FMD-KChat model achieves significant im-
provements over the compared models in chat detection, and
larger margin of accuracy improvement over the base KChat
in the detection of Chat utterances with false mention.

2. THE PROPOSED APPROACH

2.1. KChat Model

Knowledge Retrieval. Knowledge retrieval is a process that
retrieving external knowledge from knowledge bases (KBs).
In detail, we follow the previous work [14, 15], obtaining ex-
ternal knowledge (i.e. entity types [16], a set of words which
are semantic categories to which entities belong) in utterances
from CN-Probase [17], which is a large-scale Chinese tax-
onomy for entity types retrieval. Besides, for some missing
entities in KBs, we follow previous work [14, 15], adopting
some other reliable sources (e.g. Baidu Baike, QQ music) as
supplement to improve the coverage of external knowledge.

To be more specific, for every utterance u, we rely on
KBs to retrieve a type set T with respect to the entity mention
set M for the utterance. Formally, given an utterance u =
[w1, w2, ..., wn], we match each word wi to a named entity
ei in KBs, if the word wi has an corresponding entity ei in
KBs. After that, we obtain the corresponding entity types ti
from KBs based on the named entity ei. According to every
ti in an utterance, we add all entity types inside them into T ,
getting the entity type set for the utterance.

Knowledge Incorporation. After getting the T =
{τ1, τ2, τ3, ..., τm}, where τj is the entity type and m is
the number of retrieved entity types, we vectorize every τj by

using a BERT encoder, which has been pre-trained by a large
amount of data, and so it can well encode the external knowl-
edge as embeddings with abundant prior knowledge. Notice
that since entity types are a set of words, they can be encoded
by BERT directly. Furthermore, since there may be multiple
elements in T , we sum these embeddings encoded by BERT
and scale them to control the size of the value. Finally, we
concatenate external knowledge vector d with the output of
utterance encoder θ(w). The process can be shown by:

ψj = BERT (τj) (1)

d =

∑m
j=1ψj

m
(2)

o = concat[θ(w),d] (3)

where the utterance encoder is an attentive BiLSTM model
[9]. We leverage the BiLSTM model to learn the hidden state
for each time step which contains sequential information for
the utterance and implements the soft attention mechanism to
give some key words larger weights. Here we denoteφE(wi)
as the word embedding ofwi, which is got through BERT, and
wT

a and Ws are trainable parameters. The utterance encoder
can be given by, where:

hw
i = BiLSTMw(φE(wi), h

w
i−1) (4)

θ(w) =

n∑
i=1

αihi ∝ exp(wT
a tanh(Wshi)) (5)

2.2. False Mention Discrimination

In KChat architecture, the mention-type pairs knowledge are
incorporated for the NonChat utterances to help identifying
some specific instructions. However, those mentions will be
also inevitably introduced to Chat utterances, doing harm to
the chat detection task. In FMD, we define mentions in Chat
utterances as false mentions and mentions in NonChat utter-
ances as true mentions. The goal of FMD is to discriminate
whether the mentions in an utterance are proper for it. In-
tuitively, those utterances that have true mentions are more
likely to have similar context of mentions with each other.
For example, utterance “Play Jackie Chan’s action movie”
and utterance “Play Chris Evans’s science fiction movie” are
all NonChat utterances and have true mentions for them (i.e.
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Fig. 2: The FMD-KChat architecture

Jackie Chan and Chris Evans), and the context of their men-
tions are very similar. However, in the utterance “Who is the
wife of Jackie Chan?”, the user only wants to have a chat
with PIA, so the PIA system should not integrate the external
knowledge respected to the mention (i.e. Jackie Chan) into
chat detection model, and the context of the mention is differ-
ent from above two utterances. Therefore, we take the context
of mentions in an utterance as input to discriminate whether
the mentions in it are true mentions. In detail, we mask all
mentions in an utterance and define the FMD task as a binary
classification task, labeling the context of true mentions as 1
and the context of false mentions as 0.

2.3. FMD-KChat

In terms of the mechanism that integrating FMD into KChat,
we hope to get two strong modules to finish two tasks, FMD
and chat detection. However, these two modules have mutual
effect with each other since one module takes the other’s out-
put as input. Specifically, during training, the wrong output
of KChat will wrongly indicate FMD to update its parameters
when the output of FMD is correct. And the wrong output
of FMD will also degrade the performance of KChat. So, we
can find it is hard for these two modules to converge to opti-
mal together. Therefore, a two-staged pipeline is designed to
integrate FMD into chat detection model explicitly, which can
contribute to train two strong modules. In two-staged mecha-
nism, we divide the model into two stages, the first of which is
FMD stage and the second is the chat detection stage. Firstly,
we train the FMD model and the KChat model separately.
Then we link these two models as a pipeline. The completed
FMD-KChat architecture is shown in Figure 2.

FMD Stage. In the FMD stage, we leverage the afore-
mentioned attentive BiLSTM model, whose input is the con-
text of mentions in an utterance, to discriminate the false men-
tions and judge whether the utterance should incorporate ex-
ternal knowledge. And the output in FMD stage will be sent
to the chat detection stage, which will be taken as an input of
fusion gate. The process of FMD stage is given by:

g = sigmoid(θ̂(wc)) (6)

where θ̂(wc) denotes the context of mentions in an utterance,

which has been encoded, and g is the output of FMD stage.
Chat Detection Stage. In chat detection stage we take the

utterance as input and encode it by attentive BiLSTM. The
next step is the difference between KChat and FMD-KChat.
In KChat, we just concatenate the external knowledge feature
with contextual representation. But in FMD-KChat, we add
the output of FMD stage as an input to form a fusion gate,
helping the contextual representation concatenate with the re-
liable external knowledge. The fusion gate is given by:

d̂ = gd (7)

o = concat[θ(w), d̂ ] (8)

where d denotes the sentence-level knowledge feature men-
tioned above, d̂ denotes the knowledge feature after multi-
plied by g and θ(w) is the contextual representation of the
utterance, and o is the output of the fusion gate.

3. EXPERIMENTS

3.1. Experiment Settings

Dataset. We evaluate our models on the public benchmark
corpus of SMP-ECDT [18, 19] provided by iFLYTEK Cor-
poration. The dataset consists of the two top categories chat
and task-oriented. In our evaluation, we take utterances in the
top category chat as Chat utterances and take utterances in
the top category task-oriented as our Nonchat utterances.
The dataset contains 3736 training data (3076 Chat and 660
Nonchat) and 4528 test data items (2594 Chat and 1934
Nonchat), which are all single-turn short utterances.

Training Details. We conduct all experiments with word
embeddings provided by BERT [20] (BERT-Base, Chinese1).
To explore the proper hyper-parameters, we performed 10-
fold cross validation. The earlystop strategy is employed to
terminate training when the loss on validation data does not
decrease. To avoid overfitting, dropout [21] is used. For opti-
mizer, we use Adam [22] along with learning rate 0.001. The
hidden layer size of BiLSTM is set to 50 and the batch size
is set to 64. The loss functions of both FMD and chat detec-
tion are binary cross entropy. All the results are the mean of
10 independent experiments. For the training of FMD, since
the Chat utterances which have mentions in training dataset
usually take a relatively small proportion and the other Chat
utterances have very similar contextual features as them. We
add Chat utterances without mention as a complementary
training data here, and give a label of 0 to them.

Compared Methods. We compare our proposed FMD-
KChat with suitable baselines: (1) BERT Fine tune: A pre-
trained language model [20], and it is demonstrated to be ef-
fective in ATIS intent classification [23]. (2) BiLSTM: A
classic baseline that widely used for spoken language under-
standing [6]. (3) BiLSTM Hard ATT: A standard BiLSTM

1https://github.com/google-research/bert#pre-trained-models
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Models F1 ↑ EER ↓ AUC ↑
BERT Fine tune 0.796 0.137 0.939
BiLSTM 0.798 0.150 0.916
BiLSTM Hard ATT 0.801 0.133 0.940
BiLSTM Soft ATT 0.810 0.130 0.940
KChat 0.826 0.118 0.946
KChat Gate 0.829 0.122 0.946
FMD-KChat 0.838 0.116 0.947

Table 2: Chat detection performance. The notation ↑ means
higher values are better, and ↓ means lower values are better.

with hard attention mechanism [24] is employed for chat de-
tection. (4) BiLSTM Soft ATT: A standard BiLSTM with
soft attention mechanism, which has been successfully ap-
plied in utterance classification task [9, 10]. (5) KChat: a
base model of knowledge-based chat detection, which follows
previous works [12–15] to concatenate the knowledge feature
with the contextual representation in the attentive BiLSTM.
(6) KChat Gate: a base model of knowledge-gated chat de-
tection, which has been proposed to control the information
of external knowledge to flow into the UDC model [15].

Metrics. We consider various metrics for evaluating: F1,
EER, AUC and accuracy, where equal error rate (EER) is a
commonly used out-of-domain (OOD) detection metric [25],
which is the error rate when the confidence threshold is lo-
cated where false acceptance rate (FAR) is equivalent to false
rejection rate (FRR).

3.2. Result and Analysis

Table 2 shows the result on test data of our proposed model
and competing approaches. As is showed Table 2, for the
metrics of F1, our model significantly outperforms the com-
pared methods. Compared to KChat and KChat gate, per-
formance gain of FMD-KChat reaches 1.2% and 0.9%. For
ERR, FMD-KChat also outperforms KChat and KChat gate.
And for AUC, our FMD-KChat outperforms slightly better
than above two models. Besides, compared to the data-driven
models, both of the knowledge-based models achieve larger
margin of performance improvement.

Figure 3 shows the ROC curves obtained from these mod-
els. KChat model and KChat gate surpasses all the fully data-
driven baselines, and FMD-KChat further improves the per-
formance of chat detection. Note that the performance im-
provement of the FMD-KChat model over the two models is
consistent but relatively small. This is partly because when
the FPR is too large or too small, FMD has little effect on
chat detection.

We further investigate performances on false mention dis-
crimination. The comparison of FMD-KChat and KChat on
the detection of Chat utterances with false mentions is shown
in Table 3. We use BiLSTM Soft ATT model as reference. It
can be found that KChat fails to detect Chat utterance with
false mention, and gets an accuracy of only 0.416. Com-

Fig. 3: ROC curves for different models. The upper-left cor-
ner of the ROC curves is zoomed in to facilitate a clearer view.

Models Accuracy
KChat 0.416
FMD-KChat 0.549
BiLSTM Soft ATT 0.541

Table 3: Performance on the detection of Chat utterances
with false mention.

pared to KChat, FMD-KChat achieves significantly improve-
ment on the detection of Chat utterances with false men-
tions. The accuracy of FMD-KChat which outperforms BiL-
STM Soft ATT demonstrates that the proposed FMD-KChat
has successfully avoided the impact on the inevitably intro-
duced false mention in knowledge-based models.

4. CONCLUSIONS

In this paper, we have proposed a knowledge-based chat
detection model with false mention discrimination (FMD-
KChat), which to the best of our knowledge is the first
knowledge-based neural model that incorporates with false
mention discrimination into chat detection. In FMD-KChat,
we design a two-staged pipeline, which contains an addi-
tional neural network-based classifier in the first stage for
distinguishing the false mentions and a feature fusion gate
in the chat detection stage for combining the contextual
representation with the discriminated external knowledge
feature. Experimental results on SMP-ECDT benchmark
corpus demonstrate the proposed model achieves significant
improvements over the compared models in chat detection,
and larger margin of accuracy improvement over the base
KChat in the Chat utterances with false mention.
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