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ABSTRACT
Emotion Recognition in Conversation (ERC) has consider-
able prospects due to its wide range of applications. Most
existing works integrate speaker information statically and
capture a relatively consistent atmosphere in conversation.
However, these works poorly track the emotional state dy-
namics of each party in a conversation and focus on emotion
consistency. The speakers’ emotional states are indepen-
dent but influence each other during the conversation. To
address the above issues, we propose a Speaker Dynamics
Tracking Network (SDTN) for ERC. Specifically, SDTN can
dynamically track the local and global speaker states during
emotional flow in conversation and capture implicit stimu-
lation of emotional shift. Extensive experiments on MELD
and EmoryNLP datasets demonstrate the superiority and ef-
fectiveness of our proposed SDTN model, and confirm that
every designed module consistently benefits the performance.

Index Terms— Emotion Recognition, Dialogue System,
Emotion Shift, Conversation

1. INTRODUCTION

Emotion Recognition in Conversation (ERC) is an important
research topic due to its wide applications in many impor-
tant tasks, such as empathetic dialogue generation [1], social
media analysis [2], intelligent systems [3] and so on. The
ERC task requires understanding how interlocutors express
their emotions during conversations and classifying each ut-
terance into a fixed set of emotion categories.

Unlike vanilla emotion recognition of the plain text, ERC
is dynamic and highly correlated with its speaker and context
information, especially for multi-turn conversations, which
hold complex dependency between speakers. As shown in
Figure 1, the emotional dynamics here depend on both the
previous utterances and their associated speakers’ emotional
states. It has been argued that humans perceive emotions not
only through the current utterance but also from its surround-
ing utterances [4]. Therefore, ERC models require a strong
ability to model context dependencies and speaker relations
and capture the dynamics of a specific speaker’s emotion.

* Corresponding author.

Speaker Utterance Emotion Label

Phoebe Coming through! Oh! Coming through! Oh!
Hello! Hi! No! Right! Coming through!

fear

Monica Oh well, it’s not so bad. neutral

Fireman Yeah, most of the damage is pretty mostly con-
tained in the bedrooms.

sadness

Phoebe Oh! surprise

Rachel My God! surprise

Fig. 1. A snippet of a dialog sample from the MELD Dataset.

Recent related works addressed contextual dependencies
and speaker relations using numerous approaches. Basi-
cally, they can be divided into two categories [5]: static
speaker-specific modeling [6, 7, 8, 9, 10] and dynamic
speaker-specific modeling [11, 12, 5]. The former utilizes
speaker information attached to each utterance to specify
connections between utterances. The latter adopts intra- or
inter-dependencies dynamically to facilitate modeling the
current speaker state. Meanwhile, existing ERC models pay
more attention to the speakers’ emotion consistency while
giving less consideration to the emotion shifts. However, the
speakers’ emotion changes dynamically because of the stim-
ulation during a dialogue [3], and emotion recognition errors
are more prone to occur when emotion shifts happen. Thus,
the ability to track speaker dynamics, including the emotion
shifts throughout a dialogue, synergizes with better emo-
tion classification [13]. Further, capturing implicit emotional
stimulation in speaker interaction contributes to effectively
recognizing the emotion of utterances in conversation.

In this paper, we propose a novel speaker dynamics track-
ing network to recognize the utterance’s emotion by suffi-
ciently considering the influence of local and global interac-
tion on speaker emotional dynamics, namely SDTN. Specifi-
cally, SDTN has two main modules, i.e., the speaker interac-
tion tracker (SIT) and the emotion state decoder module. The
SIT aims to track speaker interaction to capture the implicit
stimulation for the interlocutor dynamically. Furthermore,
the emotion state decoder considers the effects of emotion
consistency and shift on decoding emotional state sequences.
The experimental results demonstrate the superiority and ef-
fectiveness of our SDTN model and confirm the importanceIC
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Fig. 2. The architecture of the proposed SDTN. We treat a whole conversation as input to our model.

of speaker dynamics tracking in ERC.

2. METHODOLOGY

In ERC task, a multi-party conversation with N consec-
utive utterances and corresponding speakers is denoted as
{(u1, p1) , (u2, p2) , . . . , (uN , pN )}. Each utterance ui in
conversation is spoken by a speaker pi and has a discrete
emotion label yi ∈ E , where E is the set of emotion labels.
The ERC task aims to predict the emotion label yt for a given
ut and pt in conversation. In this section, our proposed SDTN
for ERC is provided in Figure 2.

2.1. Textual Features

Following DAG-ERC [14], we fine-tune the pre-trained lan-
guage model RoBERTa-Large [15] on each ERC dataset first
and then freeze its parameters while training our SDTN. Each
utterance is prepended with a special token [CLS] to obtain
the input sequence. Afterward, we extract an utterance-level
representation ui from the [CLS]’s embedding of the last
layer in RoBERTa with a dimension of 1024.

2.2. Context-level Modeling

Context-level Representation. Given the sequential nature
of the conversation, we employ a vanilla unidirectional GRU
[16] to capture the contextual relationship of utterances. Then
we use context-level representation ci form context memory
representation mi via a linear layer as follows:

ci,h
c
i =

−−−→
GRUC

(
ui,h

c
i−1

)
, (1)

mi = Wq ci + bq, (2)

where Wq and bq are trainable parameters.

2.3. Speaker Interaction Tracker

The SIT aims to adequately model the speaker interaction and
capture the implicit stimulation in the conversation, which
consists of local and global interaction tracker modules.
Local Interaction Tracker. Since the speaker’s emotional
state is partly affected by the stimulation from surround-
ing interlocutors’ utterances and the emotional legacy of the
speaker’s previous utterance, we keep track of the local in-
teraction for each utterance in conversation to capture local
speaker states.

Specifically, the context memory representation vector
mi is fed into GRU to learn the intrinsic logical order of local
interactions in speakers’ memory:

ql
i,h

l
i =

−−−→
GRUL

(
mi,h

l
i−1

)
, (3)

where ql
i is the output vector of GRU. Then, we use ql

i as
the query and local memory ti = {mj | ∀j, ϕ (ui) ≤ j ≤ i}
as the key and value to implement the local attention mecha-
nism, where ϕ (ui) is the last previous utterance expressed by
the same speaker of ui, generating the local interaction state
vector of ui as follows:

αl
i = Softmax

(
Wl

(
ql
i ⊙ ti

)
+ bl

)
, (4)

si =

N∑
j=1

αl
iti, (5)

where Wl and bl are trainable parameters, ⊙ is an element-
wise product operation. si is the the local interaction state of
ui. Finally, we concatenate ql

i and local interaction state si to
obtain the final local speaker state s̃i =

[
ql
i∥si

]
.

Global Interaction Tracker. We utilize the final local
speaker state s̃i of ui to obtain the state memory repre-
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sentation ms
i = Wss̃i +bs via a linear layer, where Ws and

bs are trainable parameters.
Another GRU is used to learn the intrinsic logical order

of local speaker states. Then, we employ qg
i as the query and

previous local speaker states ki =
{
ms

j | ∀j, j ≤ i
}

as the
key and value to implement the global attention, generating
the global interaction state vector gi of ui as follows:

qg
i ,h

g
i =

−−−→
GRUG

(
ms

i ,h
g
i−1

)
, (6)

αg
i = Softmax (Wg (q

g
i ⊙ ki) + bg) , (7)

gi =

N∑
j=1

αg
i ki, (8)

where Wg and bg are trainable parameters, ⊙ is an element-
wise product operation. g̃i = [qg

i ∥gi] is the the final global
speaker state of ui. Then, the final speaker state representa-
tion oi = [s̃i∥g̃i] is the concatenation of the final local and
global speaker state.

2.4. Emotion State Decoder

We employ two conditional random field (CRF) [17] layers to
capture the sequential information of emotions and yield the
final emotion labels of each utterance.
Emotion Consistency Decoder. The emotion consistency
decoder (ECD) aims to capture the consistency of emotion
labels in conversation. For an input set of speaker states O =
{o1,o2, . . . ,oN} and a sequence of emotion label predictions
y = {y1, y2, . . . , yN} of a conversation, the log-probability
of the correct label sequence can write as follows:

log(p(y | O)) = s(O,y)− log

∑
ỹ∈Y

es(O,ỹ)

 , (9)

where s(O,y) is the score for sequence y which is calcu-
lated by the trainable transition matrix Tc and the emission
matrix Qc from the final speaker states O, following a lin-
ear layer and a softmax function. Y is the set of all possible
label sequences. We optimize the CRF layer by maximizing
the probability of ground truth emotion sequence p, the loss
function is acquired:

LEC = −
∑
j

log(p(y | O)), (10)

Emotion Shift Decoder. Emotion shift describes the sudden
changes in the same speaker’s emotion, so the emotion shift
information has a specific correlation with the main task. The
emotion shift decoder (ESD) aims to capture the changes of
emotion labels in conversation.

Following [18], we preprocess the datasets to obtain the
emotion shift labels for the auxiliary task. We first select each
utterance’s preceding utterance of the same speaker. Then,

if the emotion labels of the two utterances are the same, the
emotion shift tag is set to 1; otherwise, it is set to 2. Addi-
tionally, we use 0 as the tag of the speaker’s first utterance
in the conversation. For a conversation, given a sequence of
emotion shift tags ys = {ys1, ys2, . . . , ysN}, the loss function
of the CRF layer for emotion shift decoder is acquired:

log(p(ys | O)) = s(O,ys)− log

 ∑
ỹs∈Ys

es(O,ỹs)

 , (11)

LES = −
∑
j

log(p(ys | O)). (12)

2.5. Model Training

During the training procedure, we treat the final representa-
tion oi as input and employ the standard cross-entropy loss as
objective function for speaker interaction tracker:

Pi = Softmax (Wooi + bo) , (13)

LCE = −
M∑
j=1

Nj∑
i=1

yj,i logPj,i, (14)

where Wo and bo are trainable parameters. M is the num-
ber of dialogues in the train set, Nj indicates the number of
utterances in the j-th dialogue. yj,i and Pj,i denote the one-
hot vector and probability vector for emotion labels of i-th
utterance in the j-th dialogue, respectively. The SDTN are
optimized via stochastic gradient descent during the training
phase, and the total loss is the sum of losses from three com-
ponents:

L = LCE + LEC + LES. (15)

3. EXPERIMENT

3.1. Datasets

We evaluate our proposed model on two benchmark ERC
datasets. MELD [13] is a multi-modal multi-party conver-
sation dataset collected from the TV series Friends. There
are seven emotion labels: neutral, happiness, surprise, sad-
ness, anger, disgust, and fear. EmoryNLP [19] is a multi-
party conversation dataset collected from Friends, but varies
from MELD in the choice of scenes and emotion labels. There
are seven emotion types: neutral, sad, mad, scared, powerful,
peaceful, and joyful. The statistics of them are shown in Ta-
ble 1. We adopt weighted-average F1 and micro-F1 as the
evaluation metrics.

3.2. Baselines

We compare the performance of the SDTN model with the
following baselines:
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Dataset #Dial(Train/Val/Test) #Utt(Train/Val/Test)

MELD 1,038/114/280 9,989/1,109/2,610
EmoryNLP 713/99/85 9,934/1,344/1,328

Table 1. The statistics of experimental datasets.

Model MELD EmoryNLP
W-Avg. F1 Micro F1 W-Avg. F1 Micro F1

RoBERTa 62.88 63.75 37.78 40.81

DialogueGCN 63.02 - 38.10 -
HiTrans 61.94 - 36.75 -
DialogXL 62.41 - 34.73 -
CoG-BART 64.81 65.95 39.04 42.58

DialogueRNN 63.61 - 37.44 -
DialogueCRN 63.42 - 38.91 -
SGED 63.34 - 38.47 -

COSMIC † 65.21 - 38.11 -
w/o KB 64.28 - 37.10 -

TODKAT † 65.47 - 43.12 42.68
w/o KB 63.97 - 33.79 -

Ours SDTN 66.08 66.89 39.48 44.67

Table 2. The overall performance of different pre-train-based
baseline models on MELD and EmoryNLP. The models with
† indicate that their results are not directly comparable with
ours since they used external commonsense knowledge.

Static speaker-specific models: DialogueGCN [7], HiTrans
[8], DialogXL [9], CoG-BART [10].
Dynamic speaker-specific models: DialogueRNN [11], Di-
alogueCRN [12] and SGED [5].
Knowledge-enhanced models: Both COSMIC [20] and
TODKAT [21] integrate external commonsense knowledge.

3.3. Implementation Details

We utilize the validation set to tune parameters on each
dataset and adopt AdamW with a linear scheduled warm-up
strategy. The parameters adjusted in this experiment include
learning rate, dropout rate, and warm-up ratio. Specifically,
the learning rate is 1e-5, except for the CRF layer, which is
1e-4. The results of our implemented models are all based on
an average of 5 random runs on the test set.

3.4. Results and Analysis

Table 2 shows the main results of the proposed model and all
compared baselines on the MELD and EmoryNLP datasets.
Our proposed SDTN outperformed all baseline models ex-
cept the TODKAT, which incorporates external commonsense
knowledge on EmoryNLP dataset.

Compared with the static speaker-specific models, our
SDTN outperforms CoG-BART by 1.27% on MELD and by
0.44% on EmoryNLP. For the dynamic speaker-specific mod-
els, our SDTN outperforms SGED by 2.74% on MELD and

Model MELD
W-Avg. F1 Micro F1

original SDTN 66.08 66.89
w/o SIT 64.69(↓1.39) 66.31(↓0.58)
w/o ECD + ESD 64.78(↓1.30) 66.03(↓0.86)
w/o ESD 65.29(↓0.79) 66.63(↓0.26)

Table 3. Ablation study on MELD dataset.

by 1.01% on EmoryNLP. Besides, compared with the mod-
els without external commonsense knowledge, our SDTN
achieves significantly better performances on all datasets.
For the knowledge-enhanced models, COSMIC and TOD-
KAT can utilize external knowledge. It can be observed
that compared with the models incorporating external knowl-
edge, our SDTN still outperforms TODKAT by 0.61% on
MELD in terms of the weighted-average F1 and by 1.99% on
EmoryNLP in terms of the Micro-F1.

3.5. Ablation Study

Effects of speaker interaction tracker. From Table 3, it can
be found that the performance of SDTN has a sharp decline
with 1.39% when without speaker interaction tracker (SIT),
which indicates the dynamic interaction information is vital
for capturing speakers’ emotional states.
Effects of emotion state decoder. ECD and ESD have a fa-
cilitating effect on modeling emotion dependence to some ex-
tent. To investigate the effects of the emotion state decoder in
the SDTN, we perform the ablation studies by omitting the
emotion consistency decoder (ECD) or emotion shift decoder
(ESD). We can find that the SDTN without ECD and ESD or
without ESD has a significant decline with 1.30% and 0.79%,
respectively, which verifies the effectiveness of the decoders.

4. CONCLUSION

This paper proposes a Speaker Dynamics Tracking Network
(SDTN) to fully track speakers’ interaction and capture im-
plicit stimulation in conversation to benefit understanding the
speaker dynamics for the ERC task. In particular, we design
the speaker interaction tracker to better track speaker inter-
action and capture implicit stimulation hierarchically. Then
we apply two additional CRF layers to model speakers’ emo-
tion consistency and emotion shift during a conversation. The
experimental results demonstrate the effectiveness of our pro-
posed SDTN. Applying the SDTN to multi-modal emotion
recognition in conversation will be our future work.
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