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Abstract. Supervised learning approaches have been proven effective in
slot filling, but they need massive labeled training data which is expen-
sive and time-consuming in a given domain. Recent models for cross-
domain slot filling adopt transfer learning framework to cope with the
data scarcity problem. However, these cross-domain slot filling models
rely on the same encoder representation in different stages for slot entity
task and slot type task, which decrease the performance of both tasks.
Besides, these models treat different source domains equally and ignore
the shared slot-related information in different domains, which may dam-
age the performance of cross-domain learning. In this paper, we present
a pipeline approach for cross-domain slot filling (PCD) by learning dis-
tinct contextual representations for slot entity identification and slot type
alignment, and fusing slot entity information at the input layer of the
slot type alignment model for incorporating global context. Moreover, we
also present a simple yet effective instance weighting scheme (Iw) to our
approach for better capturing the slot entities in the cross-domain set-
ting. Experiments on multiple domains show that our approach achieves
state-of-the-art performance in cross-domain slot filling. Ablation anal-
ysis and further experiments also prove the effectiveness of each part of
our model, especially in the identification of slot entities.

Keywords: Spoken language understanding · Slot filling ·
Cross-domain learning · Instance weighting scheme · Zero-shot learning

1 Introduction

Spoken language understanding (SLU) is the core component of intelligent per-
sonal digital assistants (IPDAs) such as Microsoft Cortana, Google Assistant,
Amazon Alexa, and Apple Siri [1]. It typically consists of intent detection and
slot filling. Slot filling models capture useful semantic information which has
been shown helpful for related NLP tasks.

Recently, supervised joint learning approaches have shown their effective-
ness in slot filling [2–5]. Such joint models for intent detection and slot tag-
ging have taken the state of the art of slot filling to a new level. However,
such approaches are expensive and time-consuming due to the difficulties in
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Fig. 1. Cross-domain slot filling frameworks.

collecting high-quality labeled training data with different domains. This limi-
tation has motivated us to explore cross-domain slot filling for fast adaptation
to new domains. Cross-domain adaptation copes with the data scarcity problem
in low-resource target domains [6–10]. The key challenge of slot filling in a new
domain is identifying unseen slot types without any supervision signals. Common
approaches for cross-domain slot filling are focusing on employing slot descrip-
tion (e.g., the description of slot label restaurant type is “restaurant type”) to
predict unseen slots [11–15].

Existing cross-domain slot filling models can be classified into two main cat-
egories. As shown in Fig. 1 (a), the first part of work, such as the CT model [11],
conducts slot filling individually for each slot type [12]. They generate word-level
representations, then interact with the representation of each slot type descrip-
tion in semantic space. The final predictions are independent for each slot type
based on the fused features. Besides, slot examples were also used to increase
the robustness of domain adaptation [13]. However, such models exist a multi-
ple prediction problem. Unlike the above models, as shown in Fig. 1 (b), Liu et
al. [14] proposed a two-stage slot filling framework to avoid the multiple predic-
tion problem and learn the general pattern of slot entities. They use the shared
representation to identify whether the tokens are slot entities or not by a BIO
(Begin/In/Out) 3-way classifier, and then predict their specific slot types based
on slot descriptions. For example, given a movie-related utterance “find andreas
hofer at elevenses”, the model will first capture the slot entity “andreas hofer”
and then classify its label as “movie name”. He et al. [15] further leveraged
contrastive learning and adversarial attack to improve model robustness.

Though achieving the promising performance, these two-stage models still
suffer from two issues: (1) They use the same encoder for identifying slot entities
(by using BIO structure) in stage one and predicting the specific slot types for
each entity in stage two. However, the information captured in cross-domain
learning in slot entity identification and slot type alignment is different. The
slot entity identification is to detect the entity boundary while the slot type
alignment is to predict slot labels by contexts. The performance of these two-
stage models drops in both tasks since affecting each other. (2) Such approaches
treat each source domain corpus equally. However, in cross-domain learning,
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different source domains have different contributions to the target domain, and
some of them may even cause negative transfer problems [16]. For example,
given target domain “GetWeather”, the model can get more improvements from
“BookRestaurant” domain because of the location-related shared slots, but fewer
improvements from the “PlayMusic” domain with no related shared slots at all.

To meet the above challenges, in this work, we propose a pipeline approach for
cross-domain slot filling by learning distinct contextual representations for slot
entities and slot types. The overall principle can be seen in Fig. 1 (c). It learns two
independent encoders for the slot entity model and slot type model. To capture
the entity information from the entity model in slot types prediction, we add
boundary markers into the second encoder. In addition, we introduce an instance
weighting scheme to control the contribution of different source domains to the
target domain. The core idea is to compute the similarities between domains,
which are used to adjust learning rates for the utterances of different domains.
By doing so, the model tends to learn more shared-information in more similar
domains, rather than in less similar domains.

Our main contributions are summarized as follows: (1) We propose a pipeline
approach for cross-domain slot filling with distinct contextual representations
for slot entities and slot types. (2) We introduce a simple yet effective instance
weighting scheme for better capturing slot entities and alleviating the negative
transfer problem. (3) Experiments in the zero-shot/few-shot settings on SNIPS
and SMP-ECDT datasets show that our approach outperforms the state-of-the-
art models. Ablation study and quantitative analysis also prove the effectiveness
of the proposed model.

2 Our Approach

Figure 2 illustrates our pipeline model architecture by a sample user utterance
“find andreas hofer at elevenses” and its corresponding slots. The pipeline model
consists of a slot entity and a slot type model. The slot entity model predicts
whether tokens are slot entities or not (BIO labels) and learns the slot entity
pattern with the instance weighting scheme. The slot type model classifies the
slot entities into related types with slot descriptions [11] and boundary markers.

2.1 Slot Entity Model

Following prior work, we utilize the BiLSTM-CRF structure [17] to encode the
hidden states of tokens and predict the BIO labels. The input of the model is
an utterance consisting of n tokens denoted as W = [w1, ..., wn]. Let E be the
embedding layer for utterances. We formulate the whole process as follows:

[h1,h2, ...,hn ] = BiLSTM(E(W )) (1)

[p1,p2, ...,pn ] = CRF ([h1,h2, ...,hn ]) (2)

where [h1, h2, ..., hn ] is the hidden layer and [p1, p2, ..., pn ] is the logits for
the 3-way classification.
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(a) Slot entity model (b) Slot type model

Fig. 2. The core architecture of our proposed pipeline model (PCD-Iw). Fig (a) displays
the slot entity model with instance weighting scheme to identify whether the tokens
are slot entities or not. Fig (b) shows the slot type model with boundary markers to
match the specific slot types based on slot type descriptions. The boundary markers
can be generated from the prediction results of the slot entity model.

2.2 Slot Type Model

The slot type model aims to classify the type of the slot entities predicted by the
slot entity model. Prior work [14,15] used the same encoder since it has captured
the information about which parts are the entities to focus on in predicting slot
types. However, due to the different granularity of the information to be captured
by the two tasks in cross-domain setting, using the shared representation directly
will damage the performance of the model. Hence, we build a new model for
classifying slot types.

To capture the entity boundaries and highlight the slot entities, inspired by
Zhong and Chen [18], we insert boundary markers at the input layer in this
model. Specifically, given an input utterance W and a corresponding predicted
slot entity, we define text markers as 〈S〉 and 〈/S〉, and insert them into the
input utterance before and after the slot entities (Fig. 2 (b)). Let ̂W denote this
modified sequence with text markers inserted:

̂W = ... 〈S〉 , wSTART (i), · · · , wEND(i), 〈/S〉 ... (3)

By doing so, the position information and boundary of the slot entity can be
explicitly used for the slot type prediction, which realizes the effect of the original
shared encoder. We then apply another BiLSTM encoder on ̂W to generate the
context-aware representations:

[h1,h2, ...,hn+2m] = BiLSTM(E(̂W )) (4)

where m denotes the number of the predicted slot entities in this utterance.
We take its hidden states between the start and end markers(〈S〉 and 〈/S〉) to
denote the slot representation. The representation ri of ith slot entity can be
denoted as:

ri = BiLSTM([hSTART (i), ...,hEND(i)]) (5)
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Following Shah et al. [13] and Liu et al. [14], we sum the embedding of the
slot description tokens as the description representation. Then we can obtain
a slot description matrix Mdesc ∈ R

ns×ds where ns is the number of all the
possible slot types and ds is the dimension of slot description representation.
Finally, we calculate the dot product as classification logits si = ri ·Mdesc and
get the cross-entropy loss.

2.3 Instance Weighting Scheme

Negative transfer often occurs in cross-domain learning because of the wide dif-
ferences in the distribution of different domains. Especially in slot entities pre-
dicting, for the similar sentence structure, the slot entities that need to be cap-
tured in different domains are usually different. For example, slot object name
usually appears after the phrase “What is” in domain “SearchCreativeWork”.
However, it will have a bad effect in the domain without slot object name, lead-
ing to the prediction of redundant entities in the slot entity model.

Since we can get all the possible slots in the target domain (Table 1 and
2), we introduce a simple yet effective instance weighting scheme by using the
ratio of shared slots. We quantify the similarity between the data of different
source domains and the specified target domain. For a target domain (td), the
scoring function for calculating the similarity of different source domains (sd) is
as follows:

score(sd, td) =
|Slotshared|

|Slotsd| · |Slotshared|
|Slottd| (6)

where |Slotsd| and |Slottd| are the numbers of slot types for the source domain
and the target domain respectively, and |Slotshared| is the number of shared
slots of the source domain and the target domain. For example, in Table 1,
timeRange and spatial relation are the shared slots of “GetWeather” and
“FindScreeningEvent” domains. Then we define a function fw(·) to transform
the scores into weights as follows:

weight(sd, td) = fw(score) = α + β · score(sd, td) (7)

where α and β are the hyper-parameters and are used to tune the magnitude of
similarity. For the utterances of different source domains , the learning rate is
controlled by the similarity weight, which is computed as:

LR(sd, td) = ε · weight(sd, td) (8)

where ε represents the initial learning rate for the source domain. Finally,
LR(sd, td) will be used to update the model parameters with the loss of the
CRF layer in slot entity model.

3 Experiment

3.1 Dataset

To evaluate the efficiency of our proposed model, we conduct experiments on
two benchmark datasets.
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Table 1. Detailed statistics of SNIPS dataset.

Domain Slots

Cross-domain shared Domain-specific

AddToPlaylist artist, playlist, music item playlist owner, entity name

BookRestaurant country, state, timeRange, sort,

spatial relation, city

party size number, poi, restaurant type,

facility, party size description,

served dish, cuisine, restaurant name

GetWeather country, state, timeRange, city,

spatial relation

spacurrent location,

condition description

condition temperature, geographic poi

PlayMusic sort, artist, playlist, music item year, album, genre, track, service

RateBook object type, object name object part of series type, rating value,

object select, best rating, rating unit

SearchCreativeWork object type, object name -

FindScreeningEvent timeRange, object type,

spatial relation

object location type, movie type,

movie name, location name

Table 2. Detailed statistics of SMP-ECDT dataset.

Domain Slots

Cross-domain shared Domain-specific

cookbook keyword dishName, utensil,

ingredient

epg datetime time, datetime date, category, name, code,

area

tvchannel

map startLoc poi, endLoc poi, startLoc city, endLoc city,

endLoc province, endLoc area, location city,

location province, type, startLoc area

location area, location poi

message name, content, category, teleOperator receiver, headNum

poetry keyword, author, name queryField, dynasty

train startDate date, category, startLoc city, endLoc city,

startLoc area, endLoc area, startLoc province,

endLoc province, startLoc poi, startDate time

–

video name, category, timeDescr, area, popularity, artist tag, scoreDescr

• SNIPS. We execute the experiments on the crowd-sourced benchmark corpus
SNIPS [19] that widely used for slot filling. It is a public spoken language
understanding dataset that contains 39 slot types across 7 domains (intents).
The scheme corresponding to each domain is described in Table 1. To test our
model, for each time, we choose one domain as the target domain and the
other six domains as the source domains.

• SMP-ECDT. SMP-ECDT corpus1,2 consists of 29 domains and 124 slot
labels. Due to the large number of domains and the small amount of data in
each domain, we only selected the top 7 domains with the largest amount of
data as target domains for the experiment. The statistics of these domains are
listed in Table 2. For each time, we choose one domain as the target domain
and the other 28 domains as the source domains.

1 http://conference.cipsc.org.cn/smp2019/evaluation.html.
2 https://github.com/OnionWang/SMP2019-ECDT-NLU.

http://conference.cipsc.org.cn/smp2019/evaluation.html
https://github.com/OnionWang/SMP2019-ECDT-NLU
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3.2 Baselines

We compare our model with the existing baselines:

• Concept Tagger (CT). Bapna et al. [11] utilized slot descriptions to fill
slots for each slot type individually and cope with the unseen slot types.

• Coarse-to-fine Approach (Coach). Liu et al. [14] proposed a coarse-to-fine
procedure with BIO 3-way classification and slot type prediction. It also fur-
ther introduced a template regularization (TR) to improve the performance
of similar or the same slot types. We use their best model Coach+TR to
compare with but we call it Coach simply.

• Contrastive Zero-Shot Learning with Adversarial Attack (CZSL-
Adv). He et al. [15] used contrastive loss to leverage auxiliary slot description
information and introduced an adversarial attack (Adv) training strategy
to improve model robustness. Since the paper does not provide the code of
adversarial attack part, we only use the CZSL model to compare with in the
experiments on SMP-ECDT dataset.

3.3 Implementation Details

For a fair comparison under cross-domain settings, we follow most of the set-
ups in Liu et al. [14] and He et al. [15]. For all BiLSTM encoders, We set the
hidden size to 200 and a dropout [20] rate to 0.3. Following Liu et al. [14], for
every word in SNIPS, we concatenate the word-level [21] and character-level [22]
embeddings. For SMP-ECDT datasets, we use the public Chinese pre-training
character-level embeddings [23]. We combine the samples from all source domains
for training, split 500 data samples in the target domain as the validation set
for choosing the best model and the remainder are used for the test set.

Following Liu et al. [14], we used tokenized slot names as the slots descrip-
tions of SNIPS (e.g., the description of slot label restaurant type is “restaurant
type”). For SMP-ECDT dataset, we also define a simple Chinese slot descrip-
tion for each slot type. For example, the slot description of “TV channel” is
“ ” (The Chinese word embedding of “TV channel”).

In instance weighting scheme, we set the hyper-parameters α and β to 0.2 and
15. We take the instance weighting scheme on the loss of the CRF layer. We use
Adam optimizer [24] to optimize all parameters with a learning rate of 0.0005.
We set the batch size to 32 and use the early stop of patience 5. All data shown
in the following results are the average of several independent experiments.

3.4 Overall Results

We use F1 score to evaluate the performances on each domain. Table 3 and
Table 4 show the experiment results of the proposed model on SNIPS and SMP-
ECDT datasets respectively. PCD-Iw denotes our proposed model and PCD
represents our model without instance weight scheme. Scores in each row repre-
sent the performance of the leftmost target domain.
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Table 3. Slot F1-scores on SNIPS for different target domains under zero/few-shot
learning settings. * indicates the significant improvement over all baselines (p < 0.05)

Training setting Zero-shot Few-shot on 50 samples

Domain↓ Model→ CT Coach CZSL CZSL-Adv PCD PCD-Iw CT Coach CZSL CZSL-Adv PCD PCD-Iw

AddToPlaylist 38.82 50.90 53.29 53.89 52.84 55.83* 68.69 74.68 77.71 76.18 80.24 80.37*

BookRestaurant 27.54 34.01 37.97 34.06 36.84 38.41* 54.22 74.82 77.35 76.28 77.41* 76.59

GetWeather 46.45 50.47 48.70 52.24 56.04 59.80* 63.23 79.64 81.85 83.28 84.23 85.09*

PlayMusic 32.86 32.01 29.14 34.59 31.81 36.31* 54.32 66.38 65.59 68.17 66.44 69.76*

RateBook 14.54 22.06 29.55 31.53 30.26 28.25 76.45 84.62 84.31 87.22 89.16 89.49*

SearchCreativeWork 39.79 46.65 49.32 50.61 49.78 51.81* 66.38 64.56 66.41 66.49 70.00* 69.65

FindScreeningEvent 13.83 25.63 25.95 30.05 27.75 26.95 70.67 83.85 81.14 83.26 84.10 86.43*

Average F1 30.55 37.39 39.13 40.99 40.76 42.50* 64.85 75.51 76.34 77.27 78.80 79.63*

Table 4. Slot F1-scores on SMP-ECDT for different target domains under zero/few-
shot learning settings. * indicates the significant improvement over all baselines (p <
0.05)

Training Setting Zero-shot Few-shot on 5 samples

Domain↓ Model→ CT Coach CZSL PCD PCD-Iw CT Coach CZSL PCD PCD-Iw

cookbook 1.35 16.95 15.00 16.54 22.27* 3.47 38.07 43.18 48.62* 42.31

epg 9.50 18.84 20.54 25.41* 24.59 13.95 31.37 29.54 39.92 39.93*

map 16.75 22.15 23.42 22.95 26.66* 18.39 35.71 32.02 28.33 28.40

message 11.19 29.87 25.23 26.59 29.89* 30.86 33.87 34.86 31.79 36.63*

poetry 19.03 43.19 43.66 43.41 43.81 21.96 50.48 53.67 45.74 65.52*

train 84.58 85.71 85.09 83.96 84.05 84.95 85.16 85.14 86.65* 86.31

video 19.41 26.39 32.13 36.68* 32.53 22.14 30.56 30.82 34.42 35.07*

Average F1 23.21 34.73 35.01 36.50 37.69* 26.94 43.60 43.92 45.07 47.73*

From Table 3 and 4, we can observe that our model significantly outper-
forms all the baselines and achieves the state-of-the-art performance in the
zero/few-shot settings. In the zero-shot setting, compared with the best prior
work, PCD achieves 1.51% and 2.68% improvement on SNIPS dataset and SMP-
ECDT dataset respectively. Moreover, since we did not use adversarial attack
training to improve the robustness of the model, the PCD-Iw actually reaches
3.37% improvement on SNIPS dataset compared to the CZSL model (F1 score
of 39.13). In the few-shot setting, PCD achieves 2.36% and 3.81% improvement
in two datasets. In addition, without instance weighting scheme the PCD frame-
work has also improved in every experiment setting. These results indicate the
effectiveness of our proposed framework.

3.5 Analysis on Slot Entity Identification

Since our PCD-Iw approach especially the instance weighting scheme has a pro-
motion effect on the identification of slot entities, we analyze this effect sepa-
rately. The results are shown in Tables 5 and 6. The scores are calculated from
our slot entity model and the first step in two-stage models [14,15].
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Table 5. BIO F1-scores on SNIPS for different target domains under zero/few-shot
learning settings.

Training setting Zero-shot Few-shot on 50 samples

Domain↓ Model→ Coach CZSL PCD PCD-Iw Coach CZSL PCD PCD-Iw

AddToPlaylist 57.06 57.43 61.77 65.43 79.08 80.98 84.93 85.17

BookRestaurant 59.49 59.51 60.39 65.29 82.56 83.75 84.63 87.06

GetWeather 57.14 59.76 66.24 71.15 79.95 84.96 89.58 90.28

PlayMusic 48.48 49.53 52.22 59.46 70.24 74.72 77.68 82.04

RateBook 32.23 38.13 34.39 35.87 86.69 89.56 89.10 90.08

SearchCreativeWork 48.88 48.27 49.97 54.66 66.69 67.90 70.41 71.47

FindScreeningEvent 37.73 40.71 44.24 46.43 84.02 85.19 84.93 88.22

Average F1 48.72 50.51 52.74 56.90 78.45 81.01 83.04 84.90

Table 6. BIO F1-scores on SMP-ECDT for different target domains under zero/few-
shot learning settings.

Training setting Zero-shot Few-shot on 5 samples

Domain↓ Model→ Coach CZSL PCD PCD-Iw Coach CZSL PCD PCD-Iw

cookbook 65.84 70.50 73.24 74.35 71.74 71.11 74.71 74.31

epg 29.72 34.89 41.46 42.70 38.61 35.28 49.19 49.28

map 53.15 57.00 55.95 57.32 56.21 52.63 54.50 56.25

message 38.35 33.50 36.17 44.58 39.16 40.73 42.06 46.47

poetry 51.15 53.08 51.41 52.05 53.50 54.68 52.69 74.86

train 92.13 89.70 91.04 89.20 91.26 89.65 93.00 93.57

video 32.39 41.58 42.23 42.51 35.12 36.79 40.91 44.15

Average F1 51.82 54.32 55.93 57.52 55.09 54.41 58.15 62.70

As can be seen from Table 5 and 6, our model achieves the state-of-the-art
performance in almost all domains under zero/few-shot settings. In the zero-shot
setting, PCD achieves 6.39% and 3.40% improvement on SNIPS dataset and
SMP-ECDT dataset respectively. In the few-shot setting, PCD achieves 3.89%
and 8.29% improvement in two datasets. The result also verifies our assump-
tions that instance weighting scheme can be used for alleviating the problem of
negative transfer and improving the performance of capturing slot entities.

3.6 Ablation Study

From Table 3 and 4, we can see that compared with PCD-Iw model, the PCD
model has a performance decline of 1.0%-2.5%, which indicates that both our
PCD model and the instance weighting scheme have an improvement effect.
As can be seen from Table 5 and 6, compared with the PCD-Iw model, the
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performance of the PCD model in identifying slot entities decreases by 1.5% to
5.0%. The relatively high gap indicates that the instance weighting scheme has
a more significant improvement in the identification of slot entities.

3.7 Analysis on Seen and Unseen Slots

Following the baselines setting, we also split the test set into “unseen” and “seen”
parts. Table 7 shows the results on seen and unseen slots in two datasets. We can
observe that our approach consistently outperforms the baselines both on the
unseen and seen slots in the two settings and two datasets. Our pipeline model
is to promote all the slot types and the instance weighting scheme also alleviates
the problem of negative transfer. Therefore, our approaches generally improve
on both unseen and seen slot types.

Table 7. Average F1-scores on SNIPS and SMP-ECDT for seen and unseen slots
across all target domains.

Dataset SNIPS SMP-ECDT

Setting 0 sample 50 samples 0 sample 5 samples

unseen seen unseen seen unseen seen unseen seen

CT 27.10 44.18 62.05 69.64 11.85 30.95 18.29 34.64

Coach 34.09 51.93 76.49 80.16 18.98 44.15 31.45 44.78

CZSL 34.57 52.69 77.15 80.09 17.05 46.74 32.74 43.41

CZSL-Adv 36.35 55.43 78.48 79.36 – – – –

PCD 35.79 55.63 78.84 80.75 20.73 48.70 29.84 46.29

PCD-Iw 36.98 56.96 80.61 81.66 21.12 49.08 39.76 49.17

4 Conclusions

In this paper, we propose a new pipeline approach with distinct slot entity and
type prediction for cross-domain slot filling. Our approach consists of a slot
entity identification model and slot type alignment model, which uses distinct
contextual representations for learning and boundary markers for connecting two
sub models. Moreover, we introduce an effective instance weighting scheme to
control the contribution of different source domains by adjusting learning rates.
Experiments show that our approach significantly outperforms existing cross-
domain slot filing models, especially in the accuracy of slot entity identification.
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