
Abstract
In this paper, we present a simple and novel approach 
for solving single image super-resolution (SISR) 
without external data set. Based on a variant of 
gaussian process regression (GPR), SISR is formulated 
as a multi-task regression problem in which each 
learning task refers to estimation of the regression
function for each image patch. Unlike conventional 
methods, which need to specify the form of the 
regression function or determine many parameters in 
the function using inefficient method, the form of 
regression function in our proposed is implicit defined 
by the kernel function and all its model parameters can 
be learned from training set automatically. 
Experimental results demonstrate that the propose 
method can preserve fine details and produce natural 
looking results with sharp edges. Compared with the 
state of the art algorithms, the results of our proposed is 
equivalent or superior to them.

1.  Introduction
Single image super-resolution (SR) seeks to generate a 

high-resolution (HR) image from the corresponding 
low-resolution (LR) input image. The problem is seriously 
ill posed, since many HR images can generate the same LR 
image, and thus it is necessary to rely on some competent 
image priors for estimating the HR image. 

Until now, existing SR methods can be classified into 
three categories: interpolation based methods [1, 2, 3, 4], 
reconstruction based methods [5, 6, 7] and learning based 
methods [8, 9, 10, 13, 14, 15, 16, 17]. Interpolation based 
methods usually apply a basic function or an interpolation 
kernel to estimate the unknown pixel in the HR grids. 
These methods are simple and low complexity, but perform 
poorly near edges in that they are prone to produce blurring 
artifacts. Reconstruction based methods emphasized the 
final HR images are obtained via imposing constraints 
based on a set of prior knowledge in the solution space of 
the inverse problem [6, 7]. However, the main problem is 
that the reconstruction edges are usually too piercing to 
look natural. Moreover, these methods often introduce 
unpleasant artifacts, such as ringing, in the HR image, 

especially along salient edges. The basic assumption of the 
learning based methods is that the high-frequency details 
lost in an HR image can be learnt from a set of low and 
high-resolution image pairs. In contrast to other methods, 
this category of methods generates an HR image from a 
single LR image, with the help of low and high-resolution 
image pair as training data. Extensive research results have 
demonstrated their powerful SR capabilities. Yang et al.
[10, 11, 12] proposed using sparse linear combinations to 
recover the missing high-frequency, allowing a much more 
compact dictionary model based on sparse coding. 
However, a huge set of training patches are necessary, 
resulting in excessively heavy computation cost. 
Meanwhile, these methods are sensitive to the image 
training data. Example based SR methods can produce 
obvious artifacts and unwanted noise into the HR result. 

Some recent studies show that natural images generally 
possess a great amount of self-similarities, i.e., local image 
structures tend to recur within and across different image 
scales [13, 15, 16, 17], and image super-resolution can be 
regularized taken into account these self-similar examples 
instead of some external database [8, 9, 10]. Particularly, 
Glasner et al. [15] use self-examples within and across 
multiple image scales to regularize the ill-posed classical 
super-resolution problem. 

This paper makes use of the original LR input image and 
its low frequency component version to construct the 
training data set, without the help of any external image, 
find out the regression function which is solved by an 
iterative way to get the optimal values of the global and 
specific parameters. Then extract feature vector from the 
up-sampled version of the input image and compute its 
corresponding HR pixel. At last, scanning the HR image 
and then calculating the HR image pixelwise.

In summary, the main contribution of this paper is
three-fold. 
1. Firstly, our work computes out the HR image with 

simple style and unified framework without any 
external data set. This promises the generalization of 
this method.

2. Secondly, our work takes advantage of the global 
parameters which mine the relative information 
among patches, and the specific parameter which 
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keeps each patch be different from others to depict the 
regression function. This considerable improve the 
efficiency. 

3. At last, the global parameters and the specific parameter 
are learned from the training set automatically by an 
iterative way. Except the input LR image, there is no 
other parameters need to be set manually. So this 
method is easy to use.

  In the rest of this paper, we first review the Gaussian 
process regression in Section 2. Then we formulate single 
image super-resolution as a multi-task gaussian process 
regression problem in Section 3. Section 4 presents our   
Reconstructed HR results and others produced by state of 
the art algorithms. Finally, we conclude the paper with 
some discussion and future developments of the proposed 
algorithm.

2. The Review of Gaussian Process 
Regression

Gaussian process regression(GPR) is a powerful tool for 
accurate function approximation in high dimensional space
[18], which is usually formulated as follows: suppose we 
are given a training set 1( , )N

i i ix y � with the i-th point d
ix R�

and its corresponding output iy R� . We want to learn a 
function f transforming the input vector ix into the target 
value iy given a model ( )i i iy f x �� � , where 

2~ (0, )i N� �  [20]. As a result, the observed targets can 
also be described by a Gaussian distribution

2~ (0, ( , ) )y N K X X I�� , where X denotes the data set 
containing all input points ix and K denotes the 
covariance matrix defined on X . The joint distribution of 
the observed target values 1{y }N

i i� and the predicted value 

*( )f x for a test point *x is given by
2

*

* * * *

~ 0,
( ) ( , )T

y K I k
p N

f x k k x x�

�� 	
 ��� 	
� � ��  � � � � �� �

, 

where * * 1 *( ( , ),..., ( , ))T
Nk k x x k x x� �� . According to the 

joint distribution, the predicted mean value *( )f x and
variance *( )V x can be computed as

2 1
* *( ) ( )Tf x k K I y� �� � , 

2 1
* * * * *( ) ( , ) ( )TV x k x x k K I k� � �� � � . 

The optimal parameter values of GPR for a specified
data set can be automatically estimated by maximizing the 
log marginal likelihood using optimization methods such as 
Quasi-Newton methods [19].

3. Our Proposed
SISR with GPR [17] was proposed by He etc.. The 

method first divide the LR image into patches, and for each 
patch, it constructed the training set, and then train the 
regression function. Finally, their method computes the HR 
patch pixelwise. From the above illustration, we can see 
that all patches take the same method to compute out its 
corresponding HR patch, and these patches are independent 
with each other in their method. However, in fact, natural 
images have many similar patches in its content. In Fig.1, 
there are various similar patches since the butterfly was 
symmetrical. Patches with same color frames have 
symmetry structure and similar texture. When processing 
the image by taking advantage of the multi-task learning 
approaches, these patches can help each other to enhance
the result.

Fig.1 patches with symmetry structure and similar texture. In this 
image, patches with same color frame have similar texture and 
structure which can be used to help each other improve the 
processing result.

3.1. Image Super-Resolution as A Multi-Task 
Regression Problem

In this paper, we focus on up-sampling a LR image by 
making use of multi-task learning approach. Fig.2
illustrates the framework of this approach. The input image 
is denoted as 1 2

0
K KL R �� , from which we obtain its low 

frequency component 1 2
1

K KL R �� by a low pass Gaussian 
filtering. We up-sample 0L using bicubic interpolation by 
a factor of s to get 1 2

1
sK sKH R �� . We use 1H to 

approximate the low frequency component of the unknown 
HR image 0H . From 0L , 1L and 1H , we aim to estimate 
the HR image 0H . First, we divide 0L into same size 
patches (e.g. 32×32) without overlapping. For each image 
patch ip  (i =1…m), there should be exit a regression 
function which maps the LR patch ip to its corresponding 
HR patch. Finding the regression function can be 
considered to be a task, and there are m tasks in total. Then 
sample pixels j

iy in ip as the targets, where i and j
represents i-th patch j-th sampled pixel. For each pixel j

iy , 
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Fig.2 the framework of single image super resolution using multi-task gaussian process regression.
we extract its feature vector j

ix in 1L , such as the intensity 
values of its corresponding eight neighborhoods of j

iy in

1L . 1( ,..., )in
i i iX x x�  denotes the data matrix for the i-th 

task, in is the number of sampled pixels in ip , the number 

of total points is 
1

m

i
i

N n
�

� � . 1( ,..., )mX X X� denotes the 

total data matrix for all tasks. According to the m tasks, we 
wish to find a unified mapping function  f which is depicted 
by some parameters. For each unknown pixel *y in 0H , 
we can extract its feature vector *x in its corresponding 
low frequency version 1H as the input of function  f to 
estimate the value of  *y . Finally, scanning 0H and 
repeating the above operation, we can obtain the 
reconstructed HR image.

3.2. The Regression Function

In this method, a latent variable j
if is defined for each 

data point j
ix and the prior distribution of 

11 1
1 1[ ,..., ,..., ,..., ]mnn T

m mf f f f f� can be given as
( | ) ~ (0, )P f X N K ,                            (1)

where K denotes the covariance matrix defined on X
using a kernel function ( , )k� � � parameterized by � . 
In a real world situation, the targets 1{ }j N

i iy � may not satisfy 
the Gaussian process assumption. Similar to [21, 22], we 
introduce a latent variable j

iz which defined as � �j j
i iz g y� . 

The prior distribution for 11 1
1 1( ,..., ,..., ,..., )mnn T

m mz z z z z� is 
defined as

( | ) ~ ( , )p z f N f D ,                           (2)
where D denotes a N N� diagonal matrix. When a data 
point belongs to the i-th task, the corresponding diagonal 

element of D is set to be 2
i� , where i� defines the noise 

level of the i-th task. This is different from GPR. In GPR,
The noise level is identical for all data points, but in our 
proposed, the noise level is only the same for data points 
belonging to the same task. Since we assume that different 
regression functions for different patches share some 
similarities, we enforce a prior on each i�   to enforce all 

i� to be close to each other. Because i R� ��  , thus, we 
enforce a log-normal prior on them

2( ) ~ ( , )ip LN� � � ,                            (3)

where 2( , )LN � � denotes the log-normal distribution with 
the probability density function as

2
2

1/2 2

1 (ln )( , ) exp
(2 ) 2t

tp
p t

�� �
� �

� 	� �
� � 

� �
.

This is equivalent to enforce a normal prior on ln i� . 

Fig.3 the graphical model of our proposed. iX denotes the data 

matrix for the i-th task, 1[ , , ]in T
i i iy y y� � is the targets of iX .

1[ ,..., ]in T
i i if f f�  and 1[z ,...,z ]in T

i i iz � are latent variables 
corresponding to iX  and iy . � , � , �  and � are global 
parameters shared by all tasks , and i� is specified parameter 
which model the noise level of i-th task.
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Bicubic[1] Yang [12] Glasner [15] Our
Figure 4. Super-resolution results(2×) of ‘Koala’ comparison of bicubic interpolation, Yang’s single image super resolution with sparse 
prior and compact dictionary [12], Glasner’s single image super resolution using redundant patches across scales [15] and our multi-task 
Gaussian process regression method.

In summary, Eq. (1), Eq. (2) and Eq. (3) are sufficient to 
define the entire model of our proposed. Model parameters 
including � , � , � and � which we called global 
parameters are shared by all tasks corresponding to the 
feature vectors, and i� which we called specific parameter
model the noise level of i-th task. The graphical model for 
our proposed is depicted in Figure 3.

According to Eq. (1) and Eq. (2), we can get
( | ) ( | ) ( , ) (0, )p z X p z f p f X N K D� � �� .     (4)

Since (y )j j
i iz g� and 1{ }m

i i� �  share a log-normal prior, 

the regression function for the training data can be wrote 

out as

      
1 1

(y | X) ( ( ) | 0, ) ( )
inm

j
i

i j

p N g y K D g y
� �

�� � �  
(5)

2

1

( | , )
m

i
i

LN � � �
�

� , 

where 1 1
1 1( ) ( ( ),..., ( ),..., ( ),..., ( ))i mn n T

m mg y g y g y g y g y� . 

3.3. Model Parameters Learning

In our proposed, we maximize the regression function to 
obtain the optimal values of these parameters. For 
computing stability, we solve an equivalent problem by 
minimizing the negative log regression functions which is 
given as follows

1

{ }, , , ,

1arg min ( ) ( ) ( ) ln
2i

Tg y K D g y K D
� � � � �

�
 �� � � �� �

� �'

1 1
ln

inm
j

i
i j

g y
� �
��

2

2
1

(ln )
ln ln

2

m
i

i
i

u�
� �

��


 ��
� � �� �

� �
� . 

Here we use the letter ‘ R ’ to represent this function, and 
minimize the function with gradient descent algorithm. The 
gradients of equation R with respect to all model 
parameters are as follows

� � � � � �� �1 1 1( ) ( )T i
i N

i

R tr K D K D g y g y K D I�
�

� � �! 
 �� � � � �� �!
2

2

ln i

i

� � �
� �
� �

� , 
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Bicubic[1] Yang [12] Glasner [15] Our
Figure 5. Super-resolution results(3×) of ‘chip’ and ‘wheel’ comparison of bicubic interpolation, yang’s single image super resolution with 
sparse prior and compact dictionary [12], Glasner’s single image super resolution using redundant patches across scales [17] and our 
multi-task Gaussian process regression method.

� � � � � � � �1 1 11
2

T

q q

R Ktr K D K D g y K D
� �

� � �� 	! !
 �� � � � �� � �� ! !� �
,

� � � � 1

1 1

ln ( )( ) i
inm

T j

i jq q u

g yR g yg y K D
� � �

�

� �

�!! !
� � �

! ! !�� , 

1
2

ln
m

i
i

m
R

� �

� �
�

�
!
�

!

�
,   

� �
1

3

ln
m

i
iR m

� �

� � �
�

�
!
� �

!

�
. 

where i
NI denotes an N×N binary diagonal matrix where a 

diagonal element is equal to 1 when the data point with the 
corresponding index belongs to the i-th task, q� is the q-th 
element of � . In our experiments, the function g has the 

form ( ) ln( )g x a bx c d� � � where , ,a b c R�� and
d R� . So [ , , , ]Ta b c d� � . 

Since the number of model parameters is not small, we 
take an iterative way to optimize R . For detailed, we first 
update 1{ }m

i i� � using gradient descent algorithm with the
other model parameters fixed and then use gradient descent 
algorithm to update the other model parameters � , � , �
and � with 1{ }m

i i� � fixed. These two steps are alternative
until convergence.
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3.4. Prediction

Since 1H is the low frequency component of 0H , and 
the relationship between them is similar to the relationship 
of 0L and 1L . For each unknown pixel *y in 0H , we first 
extract it’s feature vector *x in 1H . We define *z as 

* *(y )z g� . Since we do not know which task *x belongs 
to, we introduce a new noise level *� for *x From Eq. (4), 
we can get

� �
*

2
* * * * **

~ 0,
,T

K D kz
p N

k k x xz �
� 	�� 	� 	
� � �  � �� � � �� �

, 

where 1
* * 1 *( ( , ),..., ( , ))mn T

mk k x x k x x� �� . Then, the 

predictive distribution � �* *| , ,p z x X y can be computed as 
a Gaussian distribution with the following mean *m and 

variance 2
*�

� � 1
* * ( )Tm k K D z�� � , 

� �2 2 1
* * * * * *, ( )Tk x x k K D k�� � �� � � � . 

Here, we take *m as the predicted result for *z . From 
expression of *m , we can see that *m is independent on i� , 
so for any test data point, it is unnecessary to classify the 
test data point into some task. This property is very 
beneficial because some test data points may not even 
belong to any of the tasks in the training set in many 
practical applications. According to the relationship 
between y and z that � �z g y� and � �* *z g y� , we can get 
the prediction for the output of *x as

� � � �� �1 1
* * ( )Ty g k K D g y� �� � .         6

Scanning the whole HR image and repeating the above 
operation, we can compute out the HR image pixelwise.

4. Experiments
Experiments have been conducted to evaluate our 

method in comparison with several state-of-the-art 
algorithms, which include Bicubic [1], Yang [12], Glasner
[15] and GPR [17]. We start by using the original image as 
LR input and upsample it with a scale factor of 2. For 
further up-sampling, we used the previous output as the 
input and solved its HR image. Note that, for a color image, 
we first transform the image from RGB to YIQ. Then, the Y 
channel (intensity) is up-sampled by our algorithm because 
human vision is more sensitive to brightness. I and Q 
channels are interpolated by the bicubic method. Finally, 
the three channels are combined to form the final HR result. 
Both qualitative and quantitative methods are used in order 
to evaluate our method. For quantitative evaluation, we use 
PSNR and SSIM to measure super-resolution results. The 

better super-resolution result should provide larger PSNR 
and SSIM values. 

Figure 4 displays the results of image ‘Koala’ with 2 
scale factor. We can notice that: the bicubic result of 
‘Koala’ produces poor edge and many blurring artifacts. 
The result of Glasner method also produces many visual 
artifacts. The results of Yang and our proposed are better 
than the other two, and from the red close-up, we can see 
that our result have more pleased texture and sharper edge 
than Yang’s. 

Figure 5 illustrates the results of images ‘chip’ and 
‘wheel’ with 3 scale factor. Our results have sharper edges 
and richer texture than the other three, especially in the 
closed-up of image ‘wheel’. From the results of ‘wheel’, 
we can see that the result of bicubic and Glasner produce 
blurring edges, and Yang’ result has more artifacts along 
the edge. 

Table.1 provides the numerical comparison of our 
method with bicubic [1], Yang [12], Glasner [15] and GPR 
[17]. The test images are popular examples image 
processing field. For each method, there are two rows. The 
first row is PSNR, the second row is SSIM.

Table 1. PSNR and SSIM for 3 scale factor
Bicubic

[1]
Yang
[12]

Glasner
[15]

GPR
[17] Our

Lena 30.8492 
0.8653 

31.3239 
0.8659 

30.3197 
0.8672 

30.4197 
0.8695 

31.3537 
0.8953

Baboon 21.8617 
0.5429 

21.9884 
0.5936 

20.6943 
0.4782 

22.0003 
0.5731 

22.1031 
0.5779

Peppers 29.5054 
0.8469 

29.8484 
0.8498

29.4152 
0.8353 

29.6830 
0.8541 

29.7135 
0.8473 

Airplane 28.4908 
0.8726 

28.3233 
0.8810 

27.8095 
0.8196 

27.7303 
0.8831 

28.3573 
0.8913

Koala 29.1492 
0.8009

29.5286 
0.8162

28.6700 
0.7064

29.1361 
0.8131

29.1559 
0.8236

Baby 32.6288 
0.8931

32.3168 
0.8882

32.5818 
0.8393

32.6504 
0.8996

32.5896 
0.8964

5. Conclusion
In this paper, we present a simple and novel algorithm to 

solve SISR problem. Supported by multi-task gaussian 
process regression, our method mines the relative 
information among patches with global parameters and 
keep each patch be different from others by specified 
parameter to computer the reconstructed HR image 
pixelwise. Experimental results demonstrate that the 
proposed method can preserve fine details and produce 
natural looking results with sharp edges. In the future, we 
plan to adapt the method for the problem of video 
super-resolution.
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