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Behavior Recognition and Tracking Method of Group-housed Pigs
Based on Improved DeepSORT Algorithm

TU Shugin'  LIU Xiaolong' LIANG Yun' ZHANG Yu’ HUANG Lei' TANG Yinjie'
(1. College of Mathematics and Informatics South China Agricultural University Guangzhou 510642 China
2. College of Electronic Engineering South China Agricultural University Guangzhou 510642 China)

Abstract: Behavior recognition and tracking of group-housed pigs are an effective aid to monitor pigs’
health status in smart farming. In real farming scenarios it is still challenging to automatically track the
behavior of group-housed pigs by using computer vision techniques due to the pigs’ overlapping occlusion
and illumination change which cause the identity ( ID) of pig to switch wrongly. To improve the
situation an improved DeepSORT algorithm of behavior tracking based on YOLO v5s was proposed. The
improvement of the algorithm included two parts. One was that the trajectory processing and data
association were improved in the scene where there was a fixed number of pigs. This reduced ID switch
and enhanced tracking stability. The other was that the behavior information from YOLO v5s detection
algorithm was introduced into the tracking algorithm thereby achieving behavior recognition of pigs in
tracking. The experimental results showed that YOLO v5s algorithm had a mAP of 99.3% and an F1 of
98.7% in object detection. In terms of re-identification the Top —1 accuracy of the experiment was
99.88% . In terms of tracking the method achieved a favorable performance with a MOTA of 91. 9%
an IDF1 of 89.2% and an IDS of 33. Compared with the original DeepSORT algorithm the proposed
method improved 1. 0 percentage points and 16. 9 percentage points in MOTA and IDF1 respectively and
decreased 83.8% in IDS. This showed that the improved DeepSORT algorithm was able to achieve
behavior tracking of group-housed pigs with stable ID. The method can provide technical support for no—
contact automatic monitoring of pigs.
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Fig.1 Results after data augmentation

Fig.2  Flow chart of behavior tracking algorithm
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Tab.3 Experimental results of object detection %
F1 AP mAP
99.9 99.4 99. 6 99.7
99.2 98.3 98.7 99.5
99.1 99. 6 99.3 99.5
99.0 95.2 97.1 98.6
99.3 98. 1 98.7 99.3




350 2022
o 100 Top — 1
99. 88%
YOLO v5s 3.3
7 o 7a N 3.3.1
5 :
; 7Tb ) ( Identity switch IDS) ID
;o Te . ( Identification F1 IDFT1)
;o 7d \
o ( Multiple
o YOLO v5s object tracking accuracy MOTA) N
o IDS
o ( Multiple object tracking
precision MOTP)
o ( Frames per second FPS)
3.3.2
7 YOLO v5s
Fig.7 Detection results of group-housed pigs
based on YOLO v5s algorithm
DeepSORT 4 o

3.2
Market — 1501 *

256

100 0
Top — 1
1

8 Top — 1
25
8 Top —1

Fig.8 Top — 1 accuracy curves of re-identification model

4

Tab.4 Experimental results before and after improvement
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